5. On the Nilpotency Indices of the Radicals of Group Algebras of p-Solvable Groups

By Shigeo Koshitani
Department of Mathematics, Tsukuba University
(Communicated by Kôsaku Yosida, m. J. A., April 12, 1977)

Let K be an algebraically closed field with characteristic $p>0, G$ a finite group of order $p^{m} g^{\prime},\left(p, g^{\prime}\right)=1, K G$ a group algebra of G over K, $J(K G)$ the radical of $K G$ and $t(G)$ the nilpotency index of $J(K G)$.

For a block B of $K G$ denote by $t(B)$ the nilpotency index of the radical $J(B)$ of B. G. O. Michler [6] showed that if a defect group D of B is cyclic and normal in G, then B is a serial ring and $t(B)=|D|$. In this paper we shall prove that when D is cyclic, B is serial if and only if $t(B)=|D|$.
D. S. Passman [9], Y. Tsushima [11] and D. A. R. Wallace [12] showed that $m(p-1)+1 \leqq t(G) \leqq p^{m}$ provided G is p-solvable. Recently K. Motose and Y. Ninomiya [8] proved that for a p-solvable group G of p-length $1, t(G)=p^{m}$ if and only if a p-Sylow subgroup P of G is cyclic. We shall generalize this result as follows: For an arbitrary p solvable group $G, t(G)=p^{m}$ if and only if P is cyclic. This is an affirmative answer to Ninomiya's conjecture announced in the Summer Algebra Symposium at Matsuyama in Japan (1974).

We call a module uniserial if it has a unique composition series of finite length. To being with we shall prove

Proposition 1. Let B be a block of $K G$ with a defect group D. If D is cyclic, then $t(B) \leqq|D|$.

Proof. We can assume that $J(B) \neq 0$. Put that $B=\sum_{i=1}^{n} \sum_{j=1}^{f_{i}}$ $\oplus K G e_{i j}$, where $\left\{e_{i j}\right\}$ are orthogonal primitive idempotents of $K G$ such that $K G e_{i 1} \cong K G e_{i j}$ for $j=1, \cdots, f_{i} ; i=1, \cdots, n$ and $K G e_{i 1} \nsubseteq K G e_{k_{1}}$ if $i \neq k$, and $e_{i 1}=e_{i}$ for $i=1, \cdots, n$. Let $C=\left(c_{i k}\right)_{1 \leq i, k \leq n}$ be the Cartan matrix for B and t_{i} the least positive integer such that $J(K G)^{t_{i}} e_{i}=0$ for $i=1, \cdots, n$. Then $t(B) \leqq \max \left\{t_{k} \mid 1 \leqq k \leqq n\right\}=t_{i}$ for some i and $t_{i} \leqq s_{i}$, where $s_{i}=\sum_{k=1}^{n} c_{i k}$. By [4, Satz 1], there is a pair of uniserial left $K G-$ modules $L_{i 1}, L_{i 2}$ such that $J(K G) e_{i}=L_{i 1}+L_{i 2}, L_{i 1} \cap L_{i 2} \cong K G e_{i} / J(K G) e_{i}$, $L_{i 1}$ and $L_{i 2}$ have no common composition factors except $K G e_{i} / J(K G) e_{i}$, and all composition factors of $L_{i 1}$ are nonisomorphic. Again, by [4, Satz 1], $s_{i}=r_{i 1}+\left(c_{i i}-1\right) r_{i 2}$, where $r_{i v}$ is the number of nonisomorphic composition factors of $L_{i v}$ for $v=1,2$, and $r_{i 1}+r_{i 2} \leqq n+1$. If we put that $c=\max \left\{c_{k k}-1 \mid 1 \leqq k \leqq n\right\}$, by [1, Theorem 1], $|D|=c n+1$. Therefore $t(B) \leqq|D|$.

