131. Probability-theoretic Investigations on Inheritance. $I V_{4}$. Mother-Child Combinations.
 (Further Continuation.)
 By Yûsaku Komatu.
 Department of Mathematics, Tokyo Institute of Technology and Department of Legal Medicine, Tokyo University.

(Comm. by T. Furuhata, m.J.a., Nov. 12, 1951.)
4. Mother-children combination concerning families with several children.

We have discussed, in the preceding section, the probabilities of mother-children combinations concerning families with two children. The results can be further generalized to several children case. We now consider the set of a mother and her n children produced from a common father, n being arbitrary but fixed.

Consider again an inherited character consisting of m genes $A_{i}(i=1, \ldots, m)$ with distribution-probability $\left\{p_{i}\right\}$, the distribution being here also supposed to be in an equilibrium state. In general, the number of permutations, admitting the repetition, of selecting any n types of children without kinship is equal to

$$
\begin{equation*}
2^{-n} m^{n}(m+1)^{n} \tag{4.1}
\end{equation*}
$$

But, if the children are restricted such that they have a common mother, then the corresponding number becomes

$$
\begin{equation*}
m^{2} \quad \text { or } \quad(2 m-1)^{2} \tag{4.2}
\end{equation*}
$$

according to the mother of a homozygote or of a heterozygote, respectively. If they are further restricted such as to have a father also in common, then number of possible permutations reduces to a very small one. In fact, corresponding to that in $\S 3$ of IV, we get the following table.

Mating	$\mathrm{A}_{i i} \times \mathrm{A}_{i i}$	$\mathrm{~A}_{i i} \times \mathrm{A}_{i k}$	$\mathrm{~A}_{i i} \times \mathrm{A}_{h k}$	$\mathrm{~A}_{i i} \times \mathrm{A}_{h k}$	$\mathrm{~A}_{i j} \times \mathrm{A}_{i j}$	$\mathrm{~A}_{i j} \times \mathrm{A}_{i k}$	$\mathrm{~A}_{i j} \times \mathrm{A}_{h k}$
Permutation	$\mathbf{1}$	2^{n}	1	2^{n}	$3^{n v}$	$4^{n v}$	$4^{n v}$

Making use of a table on one-child case written in §3 of IV, we can easily construct the corresponding table on n-children case.

We denote by $\pi\left(A_{i j} ; A_{h_{1} k_{1}}, \ldots, A_{h_{n} k_{n}}\right)$ or briefly by

$$
\begin{equation*}
\pi\left(i j ; h_{1} k_{1}, \ldots, h_{n} k_{n}\right) \quad\left(i, j, h_{\nu}, k_{\nu}=1, \ldots, m ; \nu=1, \ldots, n\right) \tag{4.3}
\end{equation*}
$$

the probability of appearing of a combination of a mother $A_{i j}$ and her n children among which ν th child is of type $A_{h_{\nu} k_{\nu}}$ for $\nu=1$, \ldots, n. This quantity is, as before, equal to zero provided either of n relations holds :

