46. On the Unitary Equivalence in Genral Euclid Space.

By Kôsaku Yosida.
Mathematical Institute, Nagoya Imperial University.
(Comm. by T. Takagi, m. I. A., Sept. 12, 1946.)

I. Introduction and the theorem. The problem of the unitary equivalence of two bounded self-adjoint (s. a.) operators in Hilbert space was solved by E. Hellinger ${ }^{(1)}$ and H. Hahn; ${ }^{(2)}$ the result was extended by M. H. Stone ${ }^{(3)}$ to the case of not necessarily bounded s. a. operators. Later, K. Friedrichs ${ }^{(4)}$ and H. Nakano ${ }^{(5)}$ obtained respectively new forms of the condition for the unitary equivalence; and their results were respectively extended by F. Wecken ${ }^{(6)}$ and H. Nakano ${ }^{(7)}$ to the case of general euclid space R (the space in which all the axioms of the Hilbert space are satisfied except the axiom of separability). The purpose of the present note is to give a condition of the unitary equivalence in a form somewhat more simple and more algebraical than those of the above cited authors. It is easy to see ${ }^{(8)}$ that we may reduce the problem to the case of bounded s. a. operators T_{1} and T_{2}. For any bonnded s. a. operator T let (T)' be he totality of the bounded linear operators commutative with T , and let (T)" be the totality of the bounded linear operators commutative with every operator $\varepsilon(T)$ '. Then (T)' and (T)" are operator rings (with complex multipliers) and satisfy the condition (1) if $S \varepsilon(T)^{\prime}\left((T){ }^{\prime \prime}\right)$ the conjugate operator S^{*} also $\varepsilon(T)^{\prime}((T)$ ").

Moreover the ring (T)" is commutative. In terms of the operator-ring theory our result reads as follows.

Theorem. For the unitary equivalence of T_{1} and T_{2} it is necessary and sufficient that the ring $\left(\mathrm{T}_{1}\right)^{\prime}$ is isomorphic (with complex multipliers) to the ring (T_{2})' by a correspondence C which maps T_{1} onto T_{2} and which maps conjugate operators onto conjugate operators.
(1) Dissertation, Göttingen' 1907.
(2) Monatsheft Math. u. Phys. 23 (1912), 169-224.
(3) Linear transformations in Hilbert space, New York 1932.
(4) Jahresber. d D. Math. Ver. 45 (1935) II, 79-82.
(5) Ann. of Math. 42 (1941), 657-664.
(6) Math. Ann. 116 (1939), 422-455.
(7) Math. Ann. 118 (1941), 112-133.
(8) Consider $\operatorname{Tan}^{-1} \mathrm{~T}_{1}$ and $\mathrm{Tan}^{-1} \mathrm{~T}_{2}$ if T_{1} and T_{2} are unbounded.

