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L. Introduction and the theorem. The problem of the unitary equivalence
of two bounded self-adjoint (s. a.) operators in Hilbert space was solved by
E. Hellinger®V and H. Hahn ;@ the result was extended by M. H. Stone® to
the case of not necessarily bounded s. a. operators. Later, K. Friedrichs®
and H. Nakano® obtained respectively new forms of the condition for the
unitary equivalence; and their results were respectively extended by F.
Wecken® and H. Nakano” to the case of general euclid space R (the space
in which all the axioms of the Hilbert space are satisfied except the axiom
of separability). The purpose of the present note is to give a condition of
the unitary equivalence in a form spomewhat more simple and more algebrai-
cal than those of the above cited authors. It is easy to see® that we may
reduce the problem to the case of bounded s. a. operators Ty and T;. For
any bonnded s. a. operator T let (T)’ be he totality of the bounded linear
operators commutative with T, and let (T)” be the totality of the bounded
linear operators commutative with every operator ¢ (T)’. Then (T)’ and
(T)” are operator rings (with complex multipliers) and satisfy the condition
@) if Se(T)’ ((T)”) the conjugate operator S* also ¢ (T)’ (T)”).

Moreover the ring (T)” is commutative. In terms of the operator-ring theory
our result reads as follows.

Theorem. For the unitary equivalence of T; and T: it is necessary and
sufficient that the ring (T;)’ is isomorphic (with complex multipliers) to the
ring (T2)’ by a correspondence C which maps T; onto T; and which maps
conjugate operators onto conjugate operators.
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