26. Fundamental Theory of Toothed Gearing (IV).

By Kaneo Yamada.
Department of Applied Dynamics, Tôhoku University, Sendai. (Comm. by T. Kubota, M. J. A., May 12, 1949.)

We have developed the general theory of profile curves in the preceding reports from (I) to (III). ${ }^{1)}$ Now we shall give its several applications to practical curves.
§ 1. Profile curves of cycloidal system.
Take a circle with radius a_{γ} as a rolling curve K_{γ}. However, in this case, as a pitch curve K we may not necessarily take a circle. Suppose that K_{γ} (and accordingly K) is oriented as a_{γ} is positive, that is, the direction of K_{γ} is positive, if the center O of the circle K_{γ} always exists on the left side to the direction. From the two points at which the straight line connecting the center O_{y} of K_{γ} with a drawing point C invariably connected with K_{γ} intersects the perimeter of K_{γ} we choose the nearer one to C, denoting it by P_{0} and adopt P_{0} as origin. And denote by s the length of arc measured from the origin to an arbitrary point P on K_{γ}. Denote by r the signed length of the segment $P C$ and by θ the angle between the straight line $P C$ and the tangent to K_{γ} at P, where $\operatorname{sgn}(\theta)$ $=\operatorname{sgn}(r)$.

If we find the relation $r=f(s)$ between r and s and the relation $r=g(\theta$, between r and θ, they are respectively the equations of the profile curve F drawn by the drawing point C and of the path of contact Γ corresponding to F.

Now from the triangle $O_{\gamma} P C$ we have

$$
\mathrm{PC}^{2}=\mathrm{O}_{\gamma} \mathrm{C}^{2}+\mathrm{O}_{\gamma} \mathrm{P}^{2}-2 \mathrm{O}_{\gamma} \mathrm{C} \cdot \mathrm{O}_{\gamma} \mathrm{P} \cos \mathrm{C} \hat{\mathrm{O}}_{\gamma} \mathrm{P}
$$

and then denoting by e the length of the spgment $P_{0} C$

$$
r^{2}=e^{2}+4 a_{\gamma}\left(a_{\gamma}-e\right) \sin ^{2} \frac{s}{2 \overline{a_{\gamma}}}
$$

Hence, when $e>0$

$$
\begin{equation*}
r=f(s)=\sqrt{e^{2}+4 a_{\gamma}\left(a_{\gamma}-e\right) \sin ^{2} \frac{s}{2 a_{\gamma}} .} \tag{1}
\end{equation*}
$$

and when $e<0$
(1) $2 \quad r=f(s)=\left\{\begin{array}{l}\sqrt{e^{2}+4 a_{\gamma}\left(a_{\gamma}-e\right) \sin ^{2}-\frac{s}{2 a_{\gamma}}}, \text { where }|s| \leqq a_{\gamma} \cos ^{-1}\left(\frac{a_{\gamma}}{a_{\gamma}-e}\right) \\ \sqrt{e^{2}+4 a_{\gamma}\left(a_{\gamma}-e\right) \sin ^{2}-\frac{s}{2 a_{\gamma}}}, \text { where } \left\lvert\, s \geqq a_{\gamma} \cos ^{-1}\left(\frac{a_{\gamma}}{a_{\gamma}-e}\right)\right.\end{array}\right.$

In particular, when $e=0$, that is, the drawing point C exists on the perimeter of K_{γ},

1) This Proceedings, Vol. 25 (1949). No. 2.
