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Let us consider a simply connected "schlicht" domain R on the
z-plane whose boundary is a simple closed Jordan curve and an ad-
ditive class F composed o the sets of points contained in a bounded
closed subset E of R.

We suppose that a function z (0) of the sets is completely
additive with respect to any set belonging to F.

Then we shall define the potential of mass-distribution z on E
in the form

() V(z)= fg(z,)d(),
where g (z, ) is a Green’s function of the domain R with a pole
and z is any xed point in R.
The integral(i)has a meaning in the sense of the Stieltjes

Lebesgue-Radon’s integral.
From the definition(1),we easily obtain

/V(z)=0 ( is Laplacian)

at any point in the ee space R-E, o g(z,;)=0.
Now we shall study whether Gauss’ theorems on the potential

in the usual sense hold or the potentil (1) in ou definition,
succeeding to the idea o "Geen’s Geometry’’) discussed by Po.
Matsumoto.

Let the subset E be lying entirely in R. Then we can suitably
choose a constant c (0)such that the subset E is entirely enclosed
by the equipotential curve Co: g(z,zo)=C of Green’s function of R
with a pole z0

Thus, let us consider the arithmetic mean of the potential (1)by
integration on Co for which we shall use the non-Euclidean (hyper-
bolic) metric daz for the linear element.

Such an arithmetic mean by integration, we denote by A(V(}
for simplicity.

By Fubini’s theorem on the change of order of integration, we
have
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