28. Fundamental Theory of Toothed

Gearing (VI).

By Kaneo YAMADA.

Department of Applied Dynamics, Tôhoku University, Sendai. (Comm. by T. KUBOTA, M. J. A., May 12, 1949.)

Suppose that there are given on a unit sphere a pair of pitch curves K_1 and K_2 and a pair of profile curves F_1 and F_2 invariably connected with K_1 and K_2 respectively, and that the length of arcs of K and F are given the signs as well as in the case of plane curves.

§ 1. Sliding of profile curves.

At the sliding contact motion of the profile curves F_1 and F_2 , let a part of arc $d\zeta_1$ of F_1 and a part of arc $d\zeta_2$ of F_2 slide one along the other during infinitesimal time interval dl, and let $d\xi$ be, in this case, the length of arc of contact of the pitch curve K_1 or K_2 . Then the point C on F_1 slides along F_2 for the distance $d\varsigma_2$ $-d\varsigma_1$, and consequently its velocity v_{p1} is given by

$$(1)_1 v_{p_1} = \frac{d\varsigma_2 - d\varsigma_1}{dt}$$

 v_{p1} is named the velocity of sliding of F_1 (af the point C on F_2). In like manner the velocity of sliding of F_2 may be defined :

(1)₂
$$v_{h2} = \frac{d\varsigma_1 - d\varsigma_2}{dt}$$
.

Denoting by ω_1 and ω_2 respectively the instant angular velocities of K_1 and K_2 at the rolling contact motion and by λ_1 and λ_2 the spherical radii of curvature of K_1 and K_2 respectively at the instant common pitch point P we have

(2)
$$\omega_1 = \frac{1}{\sin \lambda_1} \frac{d\xi}{dt}, \quad \omega_2 = \frac{1}{\sin \lambda_2} \frac{d\xi}{dt}$$

Let ω denote the relative rolling angular velocity of K_1 to K_2 , then ω is given by

(3)
$$\omega = \omega_1 \cos \lambda_1 - \omega_2 \cos \lambda_2$$

and accordingly from (2) follows

(4)
$$\omega = \left(\frac{1}{\tan \lambda_1} - \frac{1}{\tan \lambda_2}\right) \frac{d\xi}{dt}.$$

Next, let φ be the singed length of the arc of the great circle connecting P with the point of contact C of F_1 and F_2 , then the velocity v_{p1} of C is represented by $\sin \varphi \cdot \omega$, that is,