62. Note on Pseudo-Analytic Functions.

By Eiichi Sakal.
Mathematical Institute, Nagoya University.
(Comm. by Z. Suetuna, m. J. A., Oct. 12, 1949.)

1. Let $w=f(z)=u(x, \dot{y}+i v(x, y), z=x+i y$, be an inner transformation in the sense of Stoillow in a connected domain D. Denote by E a set, in D, such that D and the derived set E^{\prime} of E have no point in common. We suppose that
a) $u_{x}, u_{y}, v_{x}, v_{y}$ exist and are continuous in $D^{*}=D-E$,
b) $J(z)=\left|\begin{array}{ll}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right|>0$ at every point in D^{*},
c) the function $q z$) defined as the ratio of major and minor axes of an infinitesimal ellipse with centre $f(z)$, into which an infinitesimal circle with centre at every point z of D^{*} is transformed by $f(z)$, is bounded in $D^{*}: q(z) \leqq K$.
$f(z)$ is then called pseudo-meromorphic (K) in $D^{\prime \prime}$.
The purpose of the present note is to give some results concerning pseudoconformal representations and the cluster sets of pseudo-meromorphic functions.
2. Let $w=f, z$) be pseudo-meromorphic (K) in a connected domain D. It is known that the set of $[z, w]$ where $w=f(z), z \in D$, defines a Riemann surface Φ, in the sense of Stoilow, spread over the w-plane. By the theory of uniformizations of P. Koebe, there exists a function $z^{\prime}=\boldsymbol{\varphi}^{\prime}(w)$ analytic in \varnothing which maps 0 on a plane (schlicht) domain D^{\prime} of the z^{\prime}-plane. Consequently we get a function $z z^{\prime}$) (or $z^{\prime}(z)$) which defines a pseudo-conformal mapping (K) between D and $D^{\prime \prime}$, by eliminating w from $w=f^{\prime}(z)$ and $z^{\prime}=\boldsymbol{\phi}^{\prime}\left(w^{\prime}\right)$.

Thus we see that a function $w=f(z)$, pseudo-meromorphic (K) in D, is a composition of a uniform function $w=\boldsymbol{\varphi}^{-1}\left(z^{\prime}\right)$, analytic in D^{\prime} and a univalent function $z^{\prime}(z)$, pseudo-regular (K) in D.

In view of the above consideration, it may be of some interest to investigate "Verzerrungssatz" concerning pseudo-conformal mapping (K). We first show that the properties of Fatou and Gross-Ahlfors hold for a bounded and univalent function, pseudo-regular (K).

Theorem 1. (Fatou's property). Let $-w=f(z)=u^{\prime}(r, \theta)+i v^{\prime}(r, \theta), z=r e^{i \theta}$, be

[^0]
[^0]: 1) S. Kakutani, Applications of the theory of pseudo-regular functions to the typeproblem of Riemann surfaces, Jap. Journ. of Math., vol. 13 (1937), pp. 375-392.
