62. Note on Pseudo-Analytic Functions.

By Eiichi SAKAI.

Mathematical Institute, Nagoya University. (Comm. by Z. SUETUNA, M. J. A., Oct. 12, 1949.)

1. Let $w=f(z)=u(x, \dot{y})+iv(x, y)$, z=x+iy, be an inner transformation in the sense of Storlow in a connected domain D. Denote by E a set, in D, such that D and the derived set E' of E have no point in common. We suppose that

- a) u_x , u_y , v_x , v_y exist and are continuous in $D^* = D E$,
- b) $J(z) = \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} > 0$ at every point in D^* ,

c) the function q z defined as the ratio of major and minor axes of an infinitesimal ellipse with centre f(z), into which an infinitesimal circle with centre at every point z of D^* is transformed by f(z), is bounded in $D^*: q(z) \leq K$.

f(z) is then called pseudo-meromorphic (K) in $D^{(i)}$.

The purpose of the present note is to give some results concerning pseudoconformal representations and the cluster sets of pseudo-meromorphic functions.

2. Let w=f(z) be pseudo-meromorphic (K) in a connected domain D. It is known that the set of [z, w] where $w=f(z), z \in D$, defines a Riemann surface \emptyset , in the sense of Stoïlow, spread over the w-plane. By the theory of uniformizations of P. Koebe, there exists a function $z' = \varphi(w)$ analytic in \emptyset which maps \emptyset on a plane (*schlicht*) domain D' of the z'-plane. Consequently we get a function z z') (or z'(z)) which defines a pseudo-conformal mapping (K) between D and D', by eliminating w from w=f(z) and $z' = \varphi(w)$.

Thus we see that a function w=f(z), pseudo-meromorphic (K) in D, is a composition of a uniform function $w=\varphi^{-1}(z')$, analytic in D' and a univalent function z'(z), pseudo-regular (K) in D.

In view of the above consideration, it may be of some interest to investigate "Verzerrungssatz" concerning pseudo-conformal mapping (K). We first show that the properties of Fatou and Gross-Ahlfors hold for a bounded and univalent function, pseudo-regular (K).

Theorem 1. (Fatou's property). Let $w = f(z) = u(r, \theta) + iv(r, \theta)$, $z = re^{i\theta}$, be

¹⁾ S. Kakutani, Applications of the theory of pseudo-regular functions to the typeproblem of Riemann surfaces, Jap. Journ. of Math., vol. 13 (1937), pp. 375–392.