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1. In his interesting manuscript "On the relation between
homological structure of Riemannian spaces and exact differential
orms which are invariant under holonomy groups" [6] written
in Japanese, the late Mr. Iwamoto proved the following theorem:
"’ Let B be the pth Betti number of a closed orientable Riemannian
manifold M and B the maximum number of linearly idependent
(in the sense o algebra) differential orms of rank 79 which are
Jnvariant under the holonomy group h of M,, then B___B". As
he skew symmetric tensors which are coefficients of differential
forms II invariant under the holonomy group h are covariant con-
stant, II’s are harmonic differential forms. The above theorem is
an immediate consequence of Hodge’s theorem [5], for two distinct
harmonic differential forms of rank/9 cannot be homologus.

In connexion wit.h the above theorem, he stated without any
indicatio of the proof the following:

Theorem If the Riemannian manifold in consideration is sym-
metric in th sense of Caftan, then, B B’.

The purpose of this paper is to give the proof of this theorem.
2. We shall start with he group theoretical definition of

symmetric Riemannian spaces.
Let M be an n-dimensional homogeneous space with the Lie

group of structure G and O be a point of M. Then all transforma-
tions of G which leave O unaltered constitute the group of isotropy
g of M. Now, a one to one mapping r of G (as a topological space)
onto itself which satisfies the properties (i) r 1 (involutive pro-
perty), (ii) conservation of the law of composition, is called an in-
volutive auomorphism of G. It is evident that all elements of
G which are invariant under r constitute a group, we shall call
it the characteristic subgroup of G with respect to r. If the
characteristic subgroup of G with respect to r coincides with the
group of isotropy g, then we call M a symmetric space.

1) The brackets denote the order of papers arranged in the bibliography
at the end of this paper.


