16. On the Simple Extension of a Space with Respect to a Uniformity. I.

By Kiiti Morita.
Tokyo University of Education. (Comm. by K. Kunugi, m.J.A., Feb. 12, 1951.)

In the present and the next notes we shall develop a general theory concerning the simple extension of a space with respect to a uniformity. As special cases we obtain various topological extensions of spaces such as completions of uniform spaces in the sense of A. Weil ${ }^{1 \text {) }}$ (or more generally in the sense of L. W. Cohen ${ }^{2}$) and the bicompact extensions of T-spaces due to N. A. Shanin) (a generalization of Wallman's bicompactification).
$\S 1$. Definitions. In the present note we say that R is a space, if R is an aggregate of "points" and to each subset A of R there corresponds a set \bar{A}, called the closure of A, with the following properties:

1) $A \subset \bar{A}$,
2) $\overline{\bar{A}}=\bar{A}$,
3) $A \subset B$ implies $\bar{A} \subset \bar{B}$,
4) $\overline{0}=0$.

Thus R is a neighbourhood space such that we can take as a basis of neighbourhoods of a point p a family of open sets containing p. As is well known a space which satisfies the additivity of the closure operation: $\overline{A+B}=\bar{A}+\bar{B}$ is a T-space.

Let R be a space. A collection $\left\{\mathfrak{u}_{\alpha} ; \alpha \in \Omega\right\}$ of open coverings of R is called a uniformity. Two uniformities $\left\{\mathfrak{U}_{\alpha}\right\}$ and $\left\{\mathfrak{B}_{\lambda}\right\}$ are called equivalent, if for any $\mathfrak{U}_{\alpha} \in\left\{\mathfrak{u}_{\alpha}\right\}$ there exists a covering $\mathfrak{B}_{\lambda} \in\left\{\mathfrak{B}_{\lambda}\right\}$ which is a refinement of \mathfrak{H}_{α}, and conversely for any \mathfrak{B}_{λ} there exists $\mathfrak{U}_{\beta} \in\left\{\mathfrak{U}_{\alpha}\right\}$ such that \mathfrak{H}_{β} is a refinement of \mathfrak{B}_{λ}. We say that a uniformity $\left\{\mathfrak{l}_{\alpha} ; \alpha \in \Omega\right\}$ agrees with the topology, if it satisfies the condition:
(A) $\left\{S\left(p, \mathfrak{U}_{\alpha}\right) ; \alpha \in \Omega\right\}$ is a basis of neighbourhoods at each point p of R.

1) A. Weil: Sur les espaces a structure uniforme et sur la topologie générale, Actualites Sci. Ind. 551, 1937; J. W. Tukey : Convergence and uniformity in topology, 1940.
2) L. W. Cohen : On imbedding a space in a complete space, Duke Math. J. 5 (1939), 174-183.
3) N. A. Shanin : On special extensions of topological spaces, Doklady URSS, 38 (1943), 3-6; On separation in topological spaces, ibid., 110-113; On the theory of bicompact extensions of topological spaces, ibid., 154-156. These papers are not yet accessible to us. We knew the results by Mathematical Reviews.
