14. On the Type of an Open Riemann Surface.

By Tadashi KURODA. Mathematical Institute, Faculty of Science,

Tôhoku University.

(Comm. by K. KUNUGI, M.J.A., Feb. 12, 1951.)

1. Let F' be an open abstract Riemann surface and I be its ideal boundary. Suppose that $F_n(n = 0, 1, ...)$ is the relatively compact (shlicht or non) subdomain of F satisfying the following four conditions:

1°) F_o is simply and $F_n(n \neq 0)$ is finitely connected,

 2°) $F_n \subset F_{n+1}$,

3°) if Γ_n is the boundary of F_n , Γ_n consists of a finite number of analytic closed curves and $\Gamma_n \cap \Gamma_{n+1} = 0$,

4°) $\bigvee_{n=0}^{\infty} F_n = F$.

Putting $R_n = F_n - \vec{F}_o$, the boundary of R_n consists of Γ_n and Γ_o . Let P be the inner point of R_n and denote by $\omega_n = \omega_n$ (Γ_n, P, R_n) the harmonic measure of Γ_n at P with respect to the domain R_n . Then we call

$$D\left(oldsymbol{\omega}_n
ight) = \iint\limits_{\mathcal{K}_n} igg[\Big(rac{doldsymbol{\omega}_n}{dx} \Big)^2 + \Big(rac{doldsymbol{\omega}_n}{dy} \Big)^2 igg] dx dy\,, \qquad t = x + i y\,,$$

the Dirichlet integral of ω_n with respect to the domain R_n , where t is the local parameter.

R. Nevanlinna [3] has proved the following:

Theorem. The ideal boundary Γ of the Riemann surface F is of harmonic measure zero if and only if $\lim D(\omega_n) = 0$.

2. Let u be the harmonic function in the domain R_u such that

$$u = \begin{cases} 0 & \text{on } \Gamma_o, \\ \log \mu_n & \text{on } \Gamma_n & (\mu_n > 1), \end{cases}$$

and, if v is the conjugate harmonic function of u, then the total variation on Γ_o equals to 2π , i.e.,

$$\int_{\Gamma_o} dv = 2\pi \ .$$

In this case we call $\log \mu_n$ the modul of the domain R_n . We shall show the following:

Theorem 1. Let $\log \mu_n$ be the modul of R_n and ω_n be the harmonic measure of Γ_n with respect to R_n . Then we have