89. Determination of a 3-Cohomology Class in an Algebraic Number Field and Belonging Algebra-Classes.

By Tadasi NAKAYAMA.

University of Illinois and Nagoya University. (Comm. by Z. SUETUNA, M.J.A., Oct. 12, 1951.)

Let k be an algebraic number field (of finite degree) and K/kbe a (finite) Galois extension with Galois group \Re . Let I_{κ} , P_{κ} be the groups of idèles and principal idèles in K. The class field theory gives rise to a factor set, of \Re , in the factor group of the idele-class group $\mathfrak{C}_{\kappa} = I_{\kappa}/P_{\kappa}$ modulo its component of unity. This factor set can be represented by a certain factor set in the ideleclass group $\mathbb{G}_{\mathcal{K}}$ itself which satisfies some further requirements, as was shown by Weil [7]; a different, direct derivation of the same factor set has been given in Nakayama [4], [5]. This last factor set in \mathbb{G}_{K} is called a canonical factor set for K/k, and is determined uniquely by K/k in the sense of equivalence. Let $\{\mathfrak{a}(\sigma, \tau)\}$ $(\sigma, \tau \in \Re)$ be a such canonical factor set for K/k and $\alpha(\sigma, \tau)$ be ideles which represent the idèle-classes $a(\sigma, \tau)$. Then the coboundary $\alpha = \delta a$ (given by $\alpha(\rho, \sigma, \tau) = a(\sigma, \tau)a(\rho\sigma, \tau)^{-1}a(\rho, \sigma\tau)a(\rho, \sigma)^{-\tau}$) is a 3-cochain in P_{κ} and is in fact a 3-cocycle. In this way we have a 3-cohomology class α in P_k attached in invariant manner to K/k. The order of this 3-cohomology class α has been determined in [5] and is equal to the degree (K:k) divided by the least common multiple of p-degrees of K/k, p running over all primes in k.

On the other hand, if \mathfrak{A} is a central simple algebra over Ksuch that every $\sigma \in \mathfrak{R}$ can be extended to an automorphism of \mathfrak{A} , then \mathfrak{A} determines a certain 3-cohomology class in P_{κ} , called the Teichmüller class of \mathfrak{A} ([6]). MacLane [3] has shown that the totality of the 3-cohomology classes arising in this way (with different \mathfrak{A} 's) form a cyclic group of the same order as that of α described above. In fact, it was shown by Hochschild and the writer that α is a generator of this cyclic group ([2]).

Now arises the problem to determine the exact algebra-class (though not unique) whose Teichmüller-class is (not only a power (with exponent prime to the above order) of, but) exactly our α , attached invariantly to K/k. The answer is given by the following theorem: Let n_p be the p-degree of K/k, for a prime p in k, and let n' be the least common multiple of all the n_p , p running over all primes in k. Then \mathfrak{A} has α as its Teichmüller-class if, and only