On the Asymptotic Distribution of the Sum of Independent Random Variables.

By Shigeru TAKAHASHI.

(Comm. by Z. Suetuna, M.J.A., Oct. 12, 1951.)

§ 1. Let $\{X_i\}$ $i=1, 2, \ldots$ be a sequence of independent random variables defined in a probability space (Ω, F, P) . The so-called central limit theorem¹⁾ states that when a sequence $\{X_i\}$ satisfies certain conditions then

$$\lim_{n\to\infty} P\left(\sqrt{\frac{1}{n}}\sum_{i=1}^n X_i(\omega) \leq a\right) = \sqrt{\frac{1}{2\pi}} \int_{-\infty}^a e^{-u^2/a} du = G(a), \quad (I)$$

where $\sqrt{\frac{1}{n}}\sum_{i=1}^{n}X_{i}$ denotes suitably normalized variable. Concerning this theorem we consider following two generalizations:

- 1° Replace a constant upper limit a of summation by a measurable function $g(\omega)$ defined in Ω .
- 2° Replace the number n of random variables of summation by a random function $N_n(\omega)$ defined in Ω .

On these generalizations many theorems have been proved²⁾. Let $\{X_i\}$ be a sequence of independent random variables satisfying the central limit theorem (I). For any real numbers a and b, we define the sets $E_{a,b}^i = [\omega ; a \leq X_i(\omega) < b]$ and denote by \bar{F} the smallest Borel field which includes all the sets $E_{a,b}^i$ defined for any a, b and $i = 1, 2, \ldots$ We complete \bar{F} with respect to the measure P and denote it by \bar{F} . In §3 we prove the following:

Theorem 1. If $E\varepsilon \ \bar{F}$, then

$$\lim_{n\to\infty} P\left(\sqrt{\frac{1}{n}}\sum_{i=1}^n X_i(\omega) \leq a, E\right) = P(E)G(a).$$

In order to prove this theorem we show some lemmas in §2, and in § 4 we consider the above generalizations by using Theorem I.

To define and to discuss the problems on $\{X_i\}$, it is sufficient to consider the probability space (Ω, F, P) as (Ω, F, P) . So the theorems proved in § 4 give the answer of the above generalizations for independent sequence.

§ 2. First of all we consider a sequence $\{X_i\}$ which satisfies following conditions:

H. Robbins, On the sum of random number of random variables. Bull. Amer. Math. Soc., vol. 54 (1948).

S. Takahashi, On the central limit theorem (under the press).

¹⁾ H. Cranier, Random variable and its probability distribution. Cambridge (1937).
2) J. C. Smith, On the asymptotic distribution of the sum of Rademacher functions. Bull. Amer. Math. Soc., vol. 51 (1945).