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88. On the Asymptotic Distribution o] the Sum of
Independent Random Variables.

By Shigeru TAKAHASHI.

(Comm. by Z. SUETUNA, M.J.A., Oct. 12, 1951.)

1. Let {X} i--1, 2, be a sequence of independent
random variables defined in a probability space (2, F, P). The
so-called central limit theorem) states that when a sequence {X}
satisfies certain conditions then
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where ,- denotes suitably normalized variable. Concern-
ing this theorem we consider ollowing two generalizations

1 Replace a constant upper limit a of summation by a
measurable unction g() defined in .2.

2 Replace the number n of random variables of summation
by a random unction ,,() defined in 2.

On these generalizations many theorems have been proved).
Let {X} be a sequence of independent random variables satisfying
the central limit theorem (I). For any real numbers a and b, we
define the sets ’.,=[;aX()b] and denote by $’ the
smallest Borel field which includes all the sets El,.,, defined or any
a, b and i 1, 2, We complete P with respect to the measure
P and denote it by . In 3 we prove the following:

Theorem 1. If Ee , then

lira P -= X () a, P(E)G(a).

In order to prove this theorem we show some lemmas in 2,
and in 4 we consider the above generalizations by using Theorem I.

To define and to discuss the problems on {}, it is sufficient
to consider the probability space (2, F, P) as (2, R, P). So the
theorems proved in 4 give the answer of the above generalizations
or independent sequence.

2. First of all we consider a sequence {X} which satisfies
ollowing conditions:
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