7. On Some Representation Theorems in an Operator Algebra. III.

By Hisaharu UMEGAKI.

Mathematical Institute, Kyûshû University. (Comm. by K. KUNUGI, M.J.A., Jan. 12, 1952.)

When we discuss group algebras on a locally compact group, the notion of C^{*}-algebra is very useful. But some group algebras are not always C^{*}-algebra. Hence we shall introduce a notion of normed algebra including C^{*}- and group algebras.

5. A normed*-algebra \mathfrak{A} with the norm $\||\cdot\|$ over the complex number field is called with D^* -algebra if \mathfrak{A} has an approximate identity $\{e_x\}$ (cf. Segal [1]) which is a directed set such as $\||e_x\|| \leq 1$ and $\||e_x x-x\|| \stackrel{\sim}{\rightarrow} 0$ for any $x \in \mathfrak{A}$. Clearly C*- and L¹-group algebras are D*-algebras. $f(\cdot)$ is said to be semi-trace of \mathfrak{A} if it is a linear functional (not always bounded) defined on a dense subalgebra generated by $\{xy; x, y \in \mathfrak{A}\}$ such that f(xy) = f(yx), $f(x^*) = \overline{f(x)}$ $f(x^*x) \geq 0$ and $f((xy)^*xy) \leq ||x||^2 f(y^*y)$. A semi-trace is pure, if it is not a linear combination of two linearly independent semi-traces of \mathfrak{A} . A representation $\{U_x, \mathfrak{H}\}$ is said to be proper, if the element $\xi \in \mathfrak{H}$ satisfying $U_x \xi = 0$ for all $x \in \mathfrak{A}$ is only the zero element O in \mathfrak{H} . Moreover we also define the properness for a two-sided representation $\{U_x, V_x, j, \mathfrak{H}\}$, if the one-sided representation $\{U_x, \mathfrak{H}\}$ or $\{V_x, \mathfrak{H}\}$ is proper. Denote the W*-algebras generated by $\{U_x; x \in \mathfrak{A}\}$ or $\{V_x; x \in \mathfrak{A}\}$ by U or V respectively.

Theorem 5. Let τ be a semi-trace of a D^* -algebra \mathfrak{A} . Then there corresponds a proper two-sided representation $\{U_x, V_x, j, \mathfrak{H}\}$ such that U=V', U'=V and $jAj=A^*$ for $A \in U \cap V$.

Corollary 5.1. If the D^* -algebra \mathfrak{A} is separable, then the semitrace is a directed integral of pure semi-traces $\pi(\cdot, \lambda)$, $\lambda \in N$ ($\sigma(\lambda)$ null set), with respect to a $\sigma(\lambda)$ -measure.

A two-sided representation $\{U_x, V_x, j, \mathfrak{H}\}$ is strictly normal, if there exists $\xi \in \mathfrak{H}$ such that $U_x \xi = V_x \xi$ for all $x \in \mathfrak{A}$ and $\{U_x \xi; x \in \mathfrak{A}\}$ span \mathfrak{H} . Then

Theorem 6. If a D^* -algebra \mathfrak{A} has a strictly normal two-sided representation $\{U_x, V_x, j, \mathfrak{H}\}$, then the normalizing function is trace and conversely. This correspondence is one-to-one without equivalence. The generated W^* -algebra U (or V) has a complete trace and both in finite class (in the sense of J. Dixmier [3]).

6. Motion in C^* - or D^* -algebra. The investigation of a motion in C^* -algebra has been introduced by I. E. Segal (cf. [2]) which is