4. A Lattice-Theoretic Treatment of Measures and Integrals.

By Shizu ENOMOTO.

(Comm. by K. KUNUGI, M.J.A., Jan. 12, 1952.)

In this paper we shall introduce a system of mathematical objects which is considered as a generalization of a set of Somen introduced by C. Carathéodory in his article [2], and which contains as particular cases a system of subsets of a set and a system of non-negative functions defined on a set. We shall give further the results corresponding to the theory of the Carathéodory's outer measure ¹⁾ and the extension theorem of Kolomogoroff-Hopf.²⁾

1. In this section we shall deal with a mathematical object \mathfrak{M} satisfying the following axioms.

Axiom 1. For every $A, B \in \mathfrak{M}$, one of the incompatible formulas A=B or $A \neq B$ is accepted and "=" satisfies the following conditions:

(1.1) A=A; (1.2) If A=B, then B=A; (1.3) If A=B and B=C, then A=C.

Axiom 2. For every $A, B \in \mathfrak{M}$, there exists only one element of \mathfrak{M} denoted by $A \neq B$, satisfying the following conditions:

(2.1) $A \ddagger A = A$; (2.2) $A \ddagger B = B \ddagger A$; (2.3) $A \ddagger (B \ddagger C) = (A \ddagger B) \ddagger C$; (2.4) If B = B', then $AB \ddagger = A \ddagger B'$.

 $A \neq B$ will be called the sum of A and B.

Definition 1. If $A \stackrel{.}{+} B = A$, then B is said to be a part of A and denoted by $A \supseteq B$ or $B \subseteq A$.

Then \mathfrak{M} may be regarded as an ordered system through the relation $A \supseteq B$ which we can replace by $A \ge B$ and in this case Definition 1 should be taken as the definition of the enouncement "B is smaller than A" or "A is greater than B".

Axiom 3. For $\{A_n\}$, $A_n \in \mathfrak{M}^{30}$, there exists the smallest element $V \in \mathfrak{M}$, of which every A_n is a part, and it will be written $V=A_1 \downarrow A_2 \downarrow \ldots$ or $V=\sum_{n=1}^{\infty}A_n$. V will be called the sum of $\{A_n\}$.

Axiom 4. There exists an element of \mathfrak{M} which is a part of every element of \mathfrak{M} and is called a *null element*.

Definition 2. For $A, B \in \mathbb{M}$, if A and B has no common part except the null element, then we say that A and B are disjunct and write $A \circ B$ or $B \circ A$.

¹⁾ Cf. [1].

²⁾ Cf. [1].

³⁾ A_n denotes A_n (n=1, 2,...).