4. A Lattice-Theoretic Treatment of Measures and Integrals.

By Shizu Enomoto.
(Comm. by K. Kunugi, m.J.A., Jan. 12, 1952.)

In this paper we shall introduce a system of mathematical objects which is considered as a generalization of a set of Somen introduced by C. Carathéodory in his article [2], and which contains as particular cases a system of subsets of a set and a system of non-negative functions defined on a set. We shall give further the results corresponding to the theory of the Carathéodory's outer measure ${ }^{1)}$ and the extension theorem of Kolomogoroff-Hopf. ${ }^{2)}$

1. In this section we shall deal with a mathematical object \mathfrak{M} satisfying the following axioms.

Axiom 1. For every $A, B \in \mathfrak{M}$, one of the incompatible formulas $A=B$ or $A \neq B$ is accepted and " $=$ " satisfies the following conditions:
(1.1) $A=A$; (1.2) If $A=B$, then $B=A$; (1.3) If $A=B$ and $B=$ C, then $A=C$.

Axiom 2. For every $A, B \in \mathfrak{M}$, there exists only one element of \mathfrak{M} denoted by $A \dot{+} B$, satisfying the following conditions:
(2.1) $A \dot{+} A=A$; (2.2) $A \dot{+} B=B \dot{+} A$; (2.3) $A \dot{+}(B \dot{+} C)=(A \dot{+} B) \dot{+} C ;$ (2.4) If $B=B^{\prime}$, then $A B \dot{+}=A \dot{+} B^{\prime}$.
$A \dot{+} B$ will be called the sum of A and B.
Definition 1. If $A \dot{+} B=A$, then B is said to be a part of A and denoted by $A \supseteq B$ or $B \subseteq A$.

Then \mathfrak{M} may be regarded as an ordered system through the relation $A \supseteq B$ which we can replace by $A \geqq B$ and in this case Definition 1 should be taken as the definition of the enouncement " B is smaller than A " or " A is greater than B '.

Axiom 3. For $\left\{A_{n}\right\}, A_{n} \in \mathfrak{M}^{3)}$, there exists the smallest element $V \in \mathfrak{M}$, of which every A_{n} is a part, and it will be written $V=A_{1} \dot{+} A_{2} \dot{+} \ldots$ or $V=\sum_{n=1}^{\sim} A_{n}$ 。 V will be called the sum of $\left\{A_{n}\right\}$.

Axiom 4. There exists an element of \mathfrak{M} which is a part of every element of \mathfrak{M} and is called a null element.

Definition 2. For $A, B \in \mathfrak{M}$, if A and B has no common part except the null element, then we say that A and B are disjunct and write $A \circ B$ or $B \circ A$.

1) Cf. [1].
2) Cf. [1].
3) A_{n} denotes $A_{n}(n=1,2, \ldots)$.
