No. 1.]

3. On Rings of Operators of Infinite Classes.

By Haruo Sunouchi.

Mathematical Institute, Tohoku University, Sendai. (Comm. by Z. SUETUNA, M.J.A., Jan. 12, 1952.)

Let M be a ring of operators in a Hilbert space H in the sense of J. von Neumann [3], and denote the center of M by M° . Recently J. Dixmier has proved the following theorem [1; Theorems 10 and 11]:

Theorem of Dixmier. If M is of finite class, then there exists a mapping $A \to A^{\flat}$ of M on M^{\flat} possessing the following properties:

- (1) If $A \in M^{\flat}$, $A^{\flat} = A$,
- $(2) \quad (\lambda A)^{\flat} = \lambda A^{\flat},$
- (3) $(A+B)^9 = A^9 + B^9$,
- $(4a) \quad (AB)^{\flat} = (BA)^{\flat},$
- $(4\beta) \quad (AB)^{\flat} = AB^{\flat} \qquad if \quad A \in M^{\flat},$
- (5a) If $A \in M_s$ and $A \ge 0$, then $A^{\flat} \in M_s$ and $A^{\flat} \ge 0$,
- (5 β) If $A \in M_s$, $A \ge 0$ and $A^{\flat} = 0$, then A = 0,
- (6) $(A^*)^9 = (A^9)^*$.

Furthermore, if there exists a mapping $A \to \varphi(A)$ of M on M^{\flat} with the properties (1) (2) (3) (4a) and (5a), then $\varphi(A) = A^{\flat}$ for all $A \in M$.

The present paper is a continuation of the one of Dixmier [1], and our object is to generalise the notion of his \mathfrak{g} -operation for the rings of operators of infinite classes. If M is a factor, our results include the one of Neumann [4].

We shall use the usual definitions and notations in the theory of rings of operators without any explanation, and the results of Dixmier will be assumed. The reader is reffered to [1] or [3].

1. Following [1] and [3], we shall say that a projection $E \in M$ is *finite* if, for any projection $F \in M$ $E \sim F$, $F \leq E$ implies F = E, and *infinite* if this is not the case. If the unit element I is finite, then we say M is of *finite class*, and otherwise M is of *infinite class*.

Consider those operators $A \in M$ which are permutable with a projection $E \in M$ and form their parts in E, $A_{(B)}$. Denote the set of all those $A_{(E)}$ ($A \in M$, and permutable with E) by $M_{(B)}$. We say $A \in M$ is contained in E if AE = EA = A. Then obviously $M_{(B)}$ is a ring of operators in EH and $(M_{(B)})^9 = (M^9)_{(E)}$ [3; Lemmas 11. 3. 2 and 11. 3. 4].