27. Probability-theoretic Investigations on Inheritance. VII_{3}. Non-Paternity Problems.

By Yûsaku Komatu.
Department of Mathematics, Tokyo Institute of Technology and Department of Legal Medicine, Tokyo University. (Comm. by T. Furuhata, m.J.a., Feb. 12, 1952.)

3. Sub-probabilities of proving non-paternity.

We have derived, in the preceding section, a formula (2.20) representing the whole probability of proving non-paternity by composing the sub-probabilities for various types of mothers. Though somewhat superfluous, we may think that the whole probability is composed of sub-probabilities concerning various kinds of motherchild combinations. We shall discuss, in the present section, such a decomposition.

We first consider the partial sum of probabilities of proving non-paternity, generally denoted by (2.2), corresponding to motherchild combination both consisting of homozygotes, necessarily of the same types. In view of the first relation (2.11), we get

$$
\begin{equation*}
\sum_{i=1}^{m} P(i i ; i i)=\sum_{i=1}^{m} p_{i}^{3}\left(1-p_{i}\right)^{2}=S_{3}-2 S_{4}+S_{5} . \tag{3.1}
\end{equation*}
$$

Next, the partial sum corresponding to those consisting of homozygotic mothers and of heterozygotic children is, in view of (2.13), given by

$$
\begin{align*}
& \sum_{i=1}^{m} \sum_{j \neq i} P(i i ; i j)=\sum_{i=1}^{m} p_{i}^{2}\left(1-2 S_{2}+S_{3}-p_{i}\left(1-p_{i}\right)^{2}\right) \tag{3.2}\\
= & S_{2}\left(1-2 S_{2}+S_{3}\right)-\left(S_{3}-2 S_{4}+S_{5}\right)=S_{2}-S_{3}-2 S_{2}^{2}+2 S_{4}+S_{2} S_{3}-S_{5} .
\end{align*}
$$

The partial sum corresponding to mother-child combinations consisting of heterozygotic mothers and of homozygotic children is given by the sum of the first two terms of the left-hand side of (2.16). Each summand being symmetric with respect to suffices i and j, we can apply the general formula (1.7) and then obtain

$$
\begin{align*}
& \sum_{i, j}^{\prime}(P(i j ; i i)+P(i j ; j j))=\sum_{i, j=1}^{m} P(i j ; i i)-\sum_{i=1}^{m} P(i i ; i i) \\
= & \sum_{i, j=1}^{m} p_{i}^{2} p_{j}\left(1-p_{i}\right)^{2}-\sum_{i=1}^{m} p_{i}^{3}\left(1-p_{i}\right)^{2} \tag{3.3}\\
= & S_{2}-2 S_{3}+S_{4}-\left(S_{3}-2 S_{4}+S_{5}\right)=S_{2}-3 S_{3}+3 S_{4}-S_{5} .
\end{align*}
$$

Here, the notation analogous to (2.19) has been used; namely,

