53. Probability-theoretic Investigations on Inheritance. IX . Non-Paternity Concerning Mother-Children Combinations. $^{\text {. }}$

By Yûsaku Komatu.
Department of Mathematics, Tokyo Institute of Technology and
Department of Legal Medicine, Tokyo University.
(Comm. by T. Furuhata, m.J.A., April 12, 1952.)

5. Decomposition of the probability J with regard to types of children.

We now proceed to decompose the whole probability J in (4.25) into sub-probabilities with respect to pairs of children types. Corresponding to (3.1), we denote by

$$
\begin{equation*}
K(h k, f g)=\sum_{i \leq j} Q(i j ; h k, f g) \tag{5.1}
\end{equation*}
$$

the sub-probability of proving non-paternity against both children ($A_{h k}, A_{f g}$).

In order to calculate the value of (5.1), it will again be convenient to consider an excess of (3.1). In view of (4.6), an inequality

$$
\begin{equation*}
K(h k, f g) \leqq H(h k, f g) \tag{5.2}
\end{equation*}
$$

holds in general, while, in particular, a useful equality

$$
\begin{equation*}
K(f g, f g)=H(f g, f g) \tag{5.3}
\end{equation*}
$$

holds good. The results corresponding to (3.2) to (3.10) are as follows:

$$
\begin{align*}
K(f f, f f)= & H(f f, f f), \tag{5.4}\\
K(h h, f f)= & H(h h, f f)-\frac{1}{4} p_{f}^{2} p_{h}^{3}\left(2-2 p_{f}-p_{h}\right) \tag{5.5}\\
K(h f, f f)= & H(h f, f f)-\frac{1}{2} p_{f}^{2} p_{h}^{2}\left(1+p_{f}\right)\left(2-2 p_{f}-p_{h}\right) \\
K(h k, f f)= & \left(h(h k, f f)-\frac{1}{4} p_{f}^{2} p_{h} p_{k}\left(2\left(1-p_{f}\right)\left(p_{h}+p_{k}\right)-\left(p_{h}^{2}+p_{k}^{2}\right)\right)\right. \\
& (h, k \neq f ; h \neq k) ; \\
K(f f, f g)= & H(f f, f g)-\frac{1}{4} p_{f}^{3} p_{f}\left(2+p_{f}-p_{f}^{2}-\left(4+p_{f}\right) p_{g}+2 p_{f}^{2}\right) \\
& (f \neq g), \\
K(f f, f g)= & H(f g, f g), \\
K(h f, f g)= & H(h f, f g)-\frac{1}{4} p_{f} p_{g} p_{h}\left(p_{f}^{2}\left(2-p_{f}-2 p_{g}\right)\right. \\
+ & \left.\left(2+8 p_{f}-2 p_{g}-5 p_{f}^{2}-10 p_{f} p_{g}\right) p_{h}-\left(1+5 p_{f}\right) p_{h}^{2}\right) \\
& \quad(f \neq g ; h \neq f, g), \\
K(h h, f g)= & H(h h, f g)-\frac{1}{2} p_{f} p_{g} p_{h}^{3}\left(2-\left(p_{f}+p_{g}\right)-p_{h}\right) \tag{5.11}\\
K(h k, f g)= & H(h k, f g) \quad(f \neq g ; h \neq f, g), \\
& -\frac{1}{2} p_{f} p_{f} p_{h} p_{k}\left(\left(2-p_{f}-p_{g}\right)\left(p_{h}+p_{k}\right)-\left(p_{h}^{2}+p_{k}^{2}\right)\right) \\
& (f \neq g ; h, k \neq f, g ; h \neq k) . \tag{5.12}
\end{align*}
$$

