52. Probability theoretic Investigations on Inheritance. IX ${ }_{2}$. Non-Paternity Concerning Mother-Children Combinations.

By Yûsaku Komatu.
Department of Mathematics, Tokyo Institute of Technology and Department of Legal Medicine, Tokyo University.

(Comm. by T. Furuhata, m.J.A., April 12, 1952.)
4. Non-paternity against both children separately.

We have discussed hitherto in the present chapter the problem of proving non-paternity, indifferent to a type of first child, against second child at any rate; it has been a matter of indifference whether the proof of non-paternity against first child is possible or not. We now proceed to the problem of proving non-paternity against both children of the same family separately.

For that purpose, we introduce as basic quantities, besides the probability of mother-children combination defined in (3.1) of IV, that of proving non-paternity of a man chosen at random against both children of a fixed triple; namely, given a triple consisting of a mother $A_{i j}$, her first child $A_{n k}$ and her second child $A_{j g}$, we ask at how many rate the non-paternity can be established against both first and second children separately, i.e., indifferent to types of second and first children respectively. The probability in question be denoted by

$$
\begin{equation*}
V(i j ; h k, f g) . \tag{4.1}
\end{equation*}
$$

Of course, only the cases are significant where there exist common suffices between i, j and h, k and between i, j and f, g. Thus, the probability of proving non-paternity against both children separately, the combination-probability being also taken into account, is then given by

$$
\begin{equation*}
Q(i j ; h k, f g)=\pi(i j ; h k, f g) V(i j ; h k, f g) . \tag{4.2}
\end{equation*}
$$

The quantities (4.1) are evidently symmetric with respect to types of both children; namely, we have

$$
\begin{equation*}
V(i j ; h k, f g)=V(i j ; f g, h k) \tag{4.3}
\end{equation*}
$$

On the other hand, since the probabilities of mother-children combination possess an analogous symmetry character, as noticed in (3.4) of IV, we see that the quantities in (4.2) also satisfy a symmetry relation of the same nature, i.e.,

$$
\begin{equation*}
Q(i j ; h k, f g)=Q(i j ; f g, h k) . \tag{4.4}
\end{equation*}
$$

Now, if the proof of non-paternity is possible against both

