## 72. Probability-theoretic Investigations on Inheritance. XI $_{2}$. Absolute Non-Paternity.

By Yûsaku Komatu.
Department of Mathemtatics, Tokyo Institute of Technology and Department of Legal Medicine, Tokyo Medical and Dental University.
(Comm. by T. Furuhata, m.J.a., June 12, 1952.)
4. Absolute non-paternity against brethren with different fathers.

Concerning brethren with different fathers, i.e., children with a mother alone in common, analogous problems arise as in the preceding section. We first consider a problem corresponding to the one discussed in § 2 of X . Let us denote by

$$
\begin{equation*}
D_{0}(i j, h k) \tag{4.1}
\end{equation*}
$$

the probability of an event that a brethren combination $\left(A_{i j}, A_{h k}\right)$ with different fathers appears and then the proof of absolute non-paternity can be established against both of them. This is the basic quantity corresponding to (2.2) of $X$. The explicit expression for (4.1) can immediately be derived from (2.1) by replacing merely a factor $\sigma(i j, h k)$ by the corresponding one $\sigma_{0}(i j, h k)$. We thus get, corresponding to (2.2) to (2.8), the following results:

A symmetry relation corresponding to (2.9) is valid here also:

$$
\begin{equation*}
D_{0}(i j, h k)=D_{0}(h k, i j) \tag{4.9}
\end{equation*}
$$

$$
(i, j, h, k=1, \ldots, m)
$$

Partial sums corresponding to (2.10) and (2.11) become

$$
\begin{align*}
D_{0}(i i)= & p_{i}^{2}\left(1-3 S_{2}+\frac{5}{2} S_{3}+S_{2}^{2}-\frac{3}{2} S_{4}\right.  \tag{4.10}\\
& \left.-\left(2-3 S_{2}+S_{3}\right) p_{i}+2\left(2-S_{2}\right) p_{i}^{2}-\frac{11}{2} p_{i}^{3}+\frac{7}{2} p_{i}^{4}\right), \\
D_{0}(i j)= & 2 p_{i} p_{j}\left(1-3 S_{2}+\frac{5}{2} S_{3}+S_{2}^{2}-\frac{3}{2} S_{4}\right. \\
& -\left(2-3 S_{2}+S_{3}\right)\left(p_{i}+p_{j}\right)+2\left(2-S_{2}\right)\left(p_{i}^{2}+p_{j}^{2}\right)-2 p_{i} p_{j} \\
& -\frac{11}{2}\left(p_{i}^{3}+p_{j}^{3}\right)-3 p_{i} p_{j}\left(p_{i}+p_{j}\right)+\frac{7}{2}\left(p_{i}^{4}+p_{j}^{4}\right)+p_{i} p_{j}\left(p_{i}^{2}+p_{j}^{2}\right) \\
& \left.+2 p_{i}^{2} p_{j}^{2}\right)
\end{align*}
$$

Sub-probabilities over homo- and heterozygotic first children become

$$
\begin{align*}
& \text { (4.3) } \quad D_{0}(i i, h h)=\frac{1}{2} p_{i}^{2} p_{h}^{2}\left(1-p_{i}-p_{h}\right)^{2} \\
& D_{0}(i i, i i)=\frac{1}{2} p_{i}^{3}\left(1+p_{i}\right)\left(1-p_{i}\right)^{2},  \tag{4.2}\\
& D_{0}(i i, h h)=\frac{1}{2} p_{i}^{2} p_{h}^{2}\left(1-p_{i}-p_{h}\right)^{2} \\
& \text { ( } h \neq i \text { ), } \\
& D_{0}(i i, i h)=\frac{1}{2} p_{i}^{2} p_{h}\left(1+2 p_{i}\right)\left(1-p_{i}-p_{h}\right)^{2} \quad(h \neq i),  \tag{4.4}\\
& D_{0}(i i, h k)=p_{i}^{2} p_{h} p_{k}\left(1-p_{i}-p_{h}-p_{k}\right)^{2} \quad(h, k \neq i ; h \neq k) ;  \tag{4.5}\\
& D_{0}(i j, i j)=\frac{1}{2} p_{i} p_{j}\left(p_{i}+p_{j}+4 p_{i} p_{j}\right)\left(1-p_{i}-p_{j}\right)^{2} \quad(i \neq j) \text {, }  \tag{4.6}\\
& D_{0}(i j, i h)=\frac{1}{2} p_{i} p_{j} p_{h}\left(1+4 p_{i}\right)\left(1-p_{i}-p_{j}-p_{h}\right)^{2} \quad(i \neq j ; h \neq i, j),  \tag{4.7}\\
& D_{0}(i j, h k)=2 p_{i} p_{j} p_{h} p_{k}\left(1-p_{i}-p_{j}-p_{h}-p_{k}\right)^{2}  \tag{4.8}\\
& (i \neq j ; h, k \neq i, j ; h \neq k) .
\end{align*}
$$

