100. Probability-theoretic Investigations on Inheritance. XIII $_{2}$. Estimation of Genotypes.

By Yûsaku Komatu.
Department of Mathematics, Tokyo Institute of Technology and Department of Legal Medicine, Tokyo Medical and Dental University.

(Comm. by T. Furuhata, m.J.a., Oct. 13, 1952.)
3. Estimation without reference to spouse.

The problem discussed in § 2 concerned the case where the type of a spouse of an individual in question is also taken into account. The corresponding problem may be treated independently of the type of a spouse.

We first consider again the simplest case, the Q blood type. Let an individual of phenotype Q be given. Then, the type q of its child is impossible unless the individual is heterozygotic. Hence, we have only to consider the case where all the n children of the individual are of the type Q. In this case, we denote by

$$
\operatorname{Pr}\left\{Q=Q Q \mid \rightarrow Q^{n}\right\} \quad \text { and } \quad \operatorname{Pr}\left\{Q=Q q \mid \rightarrow Q^{n}\right\}
$$

the probabilities a posteriori of the individual to be of homozygote $Q Q$ and of heterozygote $Q q$, respectively, which will be determined in the following lines.

Now, the probabilities a priori of $Q Q$ and $Q q$ among Q are regarded as $\overline{Q Q} / \bar{Q}=u /(1+v)$ and $\overline{Q q} / \bar{Q}=2 v /(1+v)$, respectively, the ratio being $u: 2 v$. An individual $Q Q$ produces Q alone, while an individual $Q q$ produces Q with probability

$$
\frac{\pi(Q q ; Q Q)+\pi(Q q ; Q q)}{\overline{Q q}}=\frac{1+u}{2}
$$

the π 's denoting the probabilities of mother-child combinations defined in $\S 1$ of IV, which may also be regarded as those of father-child combinations. Thus, based on the Bayes' theorem, we get the desired probabilities

$$
\begin{align*}
& \operatorname{Pr}\left\{Q=Q Q \mid \rightarrow Q^{n}\right\}=\frac{u \cdot 1^{n}}{u \cdot 1^{n}+2 v\left(\frac{1+u}{2}\right)^{n}}=\frac{2^{n-1} u}{2^{n-1} u+v(1+\cdot u)^{n}}, \tag{3.1}\\
& \operatorname{Pr}\left\{Q=Q q \mid \rightarrow Q^{n}\right\}=1-\operatorname{Pr}\left\{Q=Q Q \mid \rightarrow Q^{n}\right\}=\frac{v(1+u)^{n}}{2^{n-1} u+v(1+u)^{n}} .
\end{align*}
$$

We proceed to deal with the $A B O$ blood type. Let an individual of phenotype A be given. If it is homozygotic, then the type of a child is restricted to A or $A B$, while if it is heterozygotic, then any type of a child is possible. Accordingly, if there exists at least one

