46. On a Fundamental Lemma on Weakly Normal Rings

By Tadasi NAKAYAMA Mathematical Institute, Nagoya University (Comm. by Z. SUETUNA, M.J.A., May 13, 1953)

Let R be an (associative) ring. With a subset X of R we denote by X_r (resp. X_i) the set of right (resp. left) multiplications of the elements of X onto R. The commuter $V_{\mathfrak{A}}(X_r)$ of X_r in the absolute (module-) endomorphism ring \mathfrak{A} of R is nothing but the X-rightendomorphism ring of R. Now, if S is a subring of R and if the S_r endomorphism ring $V_{\mathfrak{A}}(S_r)$ of R (which certainly contains R_i) is generated over R_i by a family of R_i -semilinear endomorphisms of R, then we say that S is a weakly normal * subring of R. Recently the writer studied the case where the ring R and its weakly normal subring S are simple rings with minimum condition (or complete primitive rings **) and showed that then R is fully reducible as an R_l S_r -module⁸⁾; this enabled the writer to obtain a theorem of extension of isomorphisms of certain weakly normal subrings, which forms a generalization and a refinement of the theorems of Artin-Whaples¹⁾ and Cartan-Dieudonné⁴⁾, to establish a simple ring generalization of the Cartan-Jacobson³⁾⁶⁾ Galois theory (for sfields), and further, to extend Hochschild's ⁵ cohomology theory of simple algebras to simple rings⁸⁾⁹⁾¹⁰⁾. The purpose of the present short note is to observe that this fundamental lemma remains true also in case the subring S is not necessarily simple (or complete primitive) but merely semisimple. This extension entails a corresponding generalization in cohomology theory and has some bearings for Galois theory, though we shall not discuss these in the present note.

We prove thus

Theorem 1 (Fundamental lemma). Let R be a simple ring having unit element 1 and satisfying minimum condition. Let S be a weakly normal semisimple subring of R containing 1 and satisfying minimum condition. Then R is fully reducible as an R-left- and S-right-module.

Proof. Evidently R is S_r -fully reducible. Let

 $R = \mathfrak{N}_1 \oplus \mathfrak{N}_2 \oplus \cdots \oplus \mathfrak{N}_s$

be the idealistic decomposition of the S_r -module R; thus each \mathfrak{N}_i is homogeneously fully reducible with respect to S_r , and distinct \mathfrak{N}_i , \mathfrak{N}_j have no mutually isomorphic minimal S_r -submodules. The S_r -endo-

^{*)} Dieudonné 4), Nakayama 8)9)10).

^{**&}gt; With certain modification of definition and under certain restrictions.