112. On Completeness of Uniform Spaces

By Hidegorô NAKANO

(Comm. by K. KUNUGI, M.J.A., Nov. 12, 1953)

Let R be an abstract space. For a system of mappings a_{λ} of R into uniform spaces $S_{\lambda}(\lambda \in \Lambda)$, the weakest uniformity on R for which all $a_{\lambda}(\lambda \in \Lambda)$ are uniformly continuous, is called the *weak* uniformity of R by $a_{\lambda}(\lambda \in \Lambda)$. Concerning the completeness of the weak uniformity we have ¹⁾

Theorem I. Let the uniformities \mathfrak{U}_{λ} of $S_{\lambda}(\lambda \in \Lambda)$ be separative and complete. In order that the weak uniformity of R by a system of mappings \mathfrak{a}_{λ} of R into $S_{\lambda}(\lambda \in \Lambda)$ be complete, it is necessary and sufficient that for a system of points $x_{\lambda} \in S_{\lambda}(\lambda \in \Lambda)$ if

$$\prod_{\nu=1}^{n} \mathfrak{a}_{\lambda_{\nu}}^{-1} \left(U_{\lambda_{\nu}}(x_{\lambda_{\nu}}) \right) \neq 0$$

for every finite number of elements $\lambda_{\nu} \in \Lambda$ and $U_{\lambda\nu} \in \mathfrak{U}_{\lambda\nu}(\nu=1,2,\ldots,n)$, then we can find a point $x \in R$ for which $\mathfrak{a}_{\lambda}(x) = x_{\lambda}$ for every $\lambda \in \Lambda$.

The purpose of this paper is to give some generalization of this Theorem I and its applications.

I

For a uniform space R with uniformity \mathfrak{V} , a system of mappings $\mathfrak{a}_{\tau}(\gamma \in \Gamma)$ of R into a uniform space S with uniformity \mathfrak{U} is said to be *equi-continuous*, if for any $U \in \mathfrak{U}$ we can find $V \in \mathfrak{V}$ such that

 $a_{\tau}(V(x)) \subset U(a_{\tau}(x))$ for every $x \in R$ and $\gamma \in \Gamma$.

With this definition we have

Theorem II. Let the uniformity \mathfrak{U}_{λ} of $S_{\lambda}(\lambda \in \Lambda)$ be separative and complete. For a double system of mappings $\mathfrak{a}_{\tau,\lambda}$ of an abstract space R into $S_{\lambda}(\gamma \in \Gamma_{\lambda}, \lambda \in \Lambda)$, there exists the weakest uniformity on R for which $\mathfrak{a}_{\tau,\lambda}(\gamma \in \Gamma_{\lambda})$ is equi-continuous for every $\lambda \in \Lambda$, and in order that this uniformity on R be complete, it is necessary and sufficient that for a system of points $x_{\tau,\lambda} \in S_{\lambda}(\gamma \in \Gamma_{\lambda}, \lambda \in \Lambda)$ if

$$\prod_{\nu=1}^{n} \prod_{\tau \in \mathcal{I}_{\lambda\nu}} \mathfrak{a}_{\tau,\lambda\nu}^{-1}(U_{\lambda\nu}(x_{\tau,\lambda\nu})) \neq 0$$

for every finite number of elements $\lambda_{\nu} \in \Lambda$ and $U_{\lambda\nu} \in U_{\lambda\nu}$ ($\nu = 1, 2, ..., n$), then we can find a point $x \in R$ such that

$$x_{\gamma,\lambda} = \mathfrak{a}_{\gamma,\lambda}(x)$$
 for all $\gamma \in \Gamma_{\lambda}, \lambda \in \Lambda$.

¹⁾ H. Nakano: Topology and linear topological spaces, Tokyo Math. Book Ser. II, Tokyo (1951), § 35 Theorem 8. In the present paper we make use of terminologies and notations in this book. This book will be denoted by TLTS.