109. Note on Dirichlet Series. XI. On the Analogy between Singularities and Order-curves

By Chuji TANAKA

Mathematical Institute, Waseda University, Tokyo (Comm. by Z. SUETUNA, M.J.A., Nov. 12, 1953)

(1) Introduction. Let us put

(1.1) $F(s) = \sum_{n=1}^{\infty} a_n \exp(-\lambda_n s)$ $(s = \sigma + it, 0 \le \lambda_1 < \lambda_2 < \cdots < \lambda_n \rightarrow +\infty)$. O. Szász has proved the next theorem, which is a generalization of Hurwitz-Pólya's theorem (E. Landau¹⁾, p. 36).

O. Szász's Theorem (O. Szász²), p. 107). Let (1. 1) have the finite simple convergence-abscissa σ_s . If $\lim_{n \to +\infty} \log n/\lambda_n = 0$, then there exists a sequence $\{\varepsilon_n\}$ ($\varepsilon_n = \pm 1$) such that $\sum_{n=1}^{\infty} a_n \varepsilon_n \exp(-\lambda_n s)$ has $\sigma = \sigma_s$ as the natural boundary.

The author proved recently the following theorem of the same type:

Theorem (C. Tanaka⁵⁾, p. 308). Let (1. 1) have the finite simple convergence-abscissa σ_s . If $\lim_{n \to +\infty} \log n/\lambda_n = 0$, then there exists a Dirichlet series $\sum_{n=1}^{\infty} b_n \exp(-\lambda_n s)$ having $\sigma = \sigma_s$ as the natural boundary such that

(a) $|b_n| = |a_n|$ (n = 1, 2, ...) and $\lim_{n \to +\infty} |\arg(a_n) - \arg(b_n)| = 0$ or

(b) $\arg(b_n) = \arg(a_n) \ (n = 1, 2, ...) \ and \ \lim |b_n/a_n| = 1.$

In this note, we shall establish analogous theorems concerning order-curves. We first begin with

Definition. Let (1.1) be uniformly convergent in the whole plane. Then, we call the analytic curve C extending to $\sigma = -\infty$ the ordercurve of (1.1), provided that, in $D(\varepsilon; C)$ (ε : any positive constant), (1.1) has the same order as in the whole plane, where $D(\varepsilon; C)$ is the curved strip generated by circles with radii ε and having its centres on C.

Our theorems read as follows:

Theorem I. Let (1.1) with $\lim_{n \to +\infty} \log n/\lambda_n < +\infty$ be simply (necessarily absolutely) convergent in the whole plane, and C be any given analytic curve extending to $\sigma = -\infty$. Then, there exists a everywhere absolutely convergent Dirichlet series $\sum_{n=1}^{\infty} \varepsilon_n a_n \exp(-\lambda_n s)$ ($\varepsilon_n = \pm 1$), such that it has every curve C_{τ} ($-\infty < \tau < +\infty$) as its order-curve, where C_{τ} is obtained from moving C in parallel by i_{τ} ($-\infty < \tau < +\infty$).

Theorem II. Under the same assumptions as above, there exists