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We wish to characterize in this note the Brown-McCoy radical
G(A) of an associative ring A, as a radical (1, 1, 1, 1)(A), (1, 1, 1, 0)(A),
(1, 1, 0, 1)(A) and (1, 2, 1, 1)(A), respectively, where (, l, m, )(A) is a
well-defined special F-radical of the ring A in the sense of Brown-
McCoy 3 for arbitrary nonnegative integers k, l, m and n. The
concept of a (, , m, n)-radicalring A can be illustrated by the fol-
lowing elementary remarks. If the elements of A form on the
operation aob=a-}-b--ab(a,bA) a Neumann-regular semigroup (for
instance in the case of a Jacobson-radicalring A, when (A, 0) is a
group), then A is a (k, 0, 1, 1)-radicalring and a (0, l, 1, 1)-radicalring
at the same time for any integers k, l0. Furthermore any (k, 1,
m, )-semisimple ring A with minimum condition on twosided prin-
cipal ideals is, as an (A, A)-doublemodule, completely reducible in a
weak meaning, which generalizes the classical Wedderburn-Artin
structure theorem also. (For the details of radicals, see [1, 2, 3].)

In this note the knowing of the results of Brown-McCoy 3 will
be assumed for the reader. We denote the sum of all twosided prin-
cipal ideals (a()oxoa(’)--k.a")) by (k, 1, m, n)(a), where a is a fixed
element, X a varying element of A, aob--aTb--ab, a()--O, a()--a,
a(/’-a()oa and k, l, m, n are nonnegative integers. An element
aeA is called (k, l, m, n)-regular, if a(k, l, m, n)(a). We call an ele-
ment aeA strictly (k, l, m, n)-regular, if any element b of the two-
sided principal ideal (a) generated by a is (k, l, m, n)-regular. The
set (k, l, m, n)(A) of all strictly (k, l, m, n)-regular-elements of A is
called the (k, l, m, n)-radical of A. This is evidently a special F-
radical of A [3]. The rings with (k, l, m, n)-radical (0) are called
(k, l, m, n)-semisimple. We call a subdirectly irreducible (k, l, m, n)-
semisimple ring A shortly" (k, l, m, n)-primitive. An element a:0
with the condition (k, l, m, n)(a)-O is called here a (k, l, m, n)-
distinguished element of A. By 3] the (k, l, m, n)-radical of A is
the intersection of such ideals :r (’F) of A, that the factorrings
A/ are (k, l, m, n)-primitive. A/(k, l, m, n)(A) is (k, l, m, n)-semi-
simple, and a subdirect sum of (k, l, m, n)-primitive rings. By 3J a
subdirectly irreducible ring A is (k, l, m, n)-primitive if and only if
the minimal ideal )0 of A contains a (k, l, m, n)-distinguished ele-
ment d0 playing the role of unity element in the case of radical


