97. An Observation on the Brown-McCoy Radical

By F. Szász
Mathematical Institute of Academy of Science, Budapest
(Comm. by K. Kunugi, m.J.A., July 12, 1961)

We wish to characterize in this note the Brown-McCoy radical $G(A)$ of an associative ring A, as a radical $(1,1,1,1)(A),(1,1,1,0)(A)$, $(1,1,0,1)(A)$ and $(1,2,1,1)(A)$, respectively, where $(k, l, m, n)(A)$ is a well-defined special F-radical of the ring A in the sense of BrownMcCoy [3] for arbitrary nonnegative integers k, l, m and n. The concept of a (k, l, m, n)-radicalring A can be illustrated by the following elementary remarks. If the elements of A form on the operation $a \circ b=a+b-a b(a, b \in A)$ a Neumann-regular semigroup (for instance in the case of a Jacobson-radicalring A, when $(A, 0)$ is a group), then A is a ($k, 0,1,1$)-radicalring and a ($0, l, 1,1$)-radicalring at the same time for any integers $k, l \geqq 0$. Furthermore any (k, l, m, n)-semisimple ring A with minimum condition on twosided principal ideals is, as an (A, A)-doublemodule, completely reducible in a weak meaning, which generalizes the classical Wedderburn-Artin structure theorem also. (For the details of radicals, see [1], [2], [3].)

In this note the knowing of the results of Brown-McCoy [3] will be assumed for the reader. We denote the sum of all twosided principal ideals $\left(a^{(m)} \circ x \circ a^{(n)}-k \cdot a^{(l)}\right)$ by ($\left.k, l, m, n\right)(a)$, where a is a fixed element, X a varying element of $A, a \circ b=a+b-a b, a^{(0)}=0, a^{(1)}=a$, $a^{(k+1)}=a^{(k)}{ }_{\circ} a$ and k, l, m, n are nonnegative integers. An element $a \in A$ is called (k, l, m, n)-regular, if $a \in(k, l, m, n)(a)$. We call an element $a \in A$ strictly (k, l, m, n)-regular, if any element b of the twosided principal ideal (a) generated by a is (k, l, m, n)-regular. The set $(k, l, m, n)(A)$ of all strictly (k, l, m, n)-regular-elements of A is called the (k, l, m, n)-radical of A. This is evidently a special F radical of $A[3]$. The rings with (k, l, m, n)-radical (0) are called (k, l, m, n)-semisimple. We call a subdirectly irreducible (k, l, m, n)semisimple ring A shortly: (k, l, m, n)-primitive. An element $a \neq 0$ with the condition $(k, l, m, n)(a)=0$ is called here a (k, l, m, n) distinguished element of A. By [3] the (k, l, m, n)-radical of A is the intersection of such ideals $\mathfrak{I}_{\gamma}(\gamma \in \Gamma)$ of A, that the factorrings A / \mathfrak{I}_{r} are (k, l, m, n)-primitive. $A /(k, l, m, n)(A)$ is (k, l, m, n)-semisimple, and a subdirect sum of (k, l, m, n)-primitive rings. By [3] a subdirectly irreducible ring A is (k, l, m, n)-primitive if and only if the minimal ideal $\mathfrak{D} \neq 0$ of A contains a (k, l, m, n)-distinguished element $d \neq 0$ playing the role of unity element in the case of radical

