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1o Let p( 3 3 ,’",-3) be a partial differential operatorx 3x
of order m with constant coefficients. Let $ be a unit vector of the
dual space of R--{(x, x,..., x)} and for any vector $, S($, h) the
spherical neighbourhood of with radius h. Then we define the
S-regularity of P as follows"

Definition. P(..)is -regular if every distribution solution u

of the equation Pu--O defined in S(0, h) for some h, is in C(S(O, l))
for some l, whenever u belongs to C(S(0, h){xl(x, $)0}), where
l(< h) and p are independent of u.

In the present note we give some characterization of the
regularity using A. Seidenberg’s Theorem [1] as follows"

Theorem. The necessary and sufficient condition for P to be
S-regular is the following: there are a neighbourhood S($, 3), positive
numbers A, B, L, a such that if for any real number s, for any
real vector e and for any ’e S($, 3)

A<s<B([I+I) and
then s’-ki does not satisfy the characteristic equation of P, i.e.,

P(s’-ki) - O.
By Theorem and using HSrmander’s considerations [2J we see the
following

Corollary 1. If P is homogeneous and Q is weaker than P and
of order <m, then P-kQ is .-regular, whenever P is so.

Corollary 2. Let n3. Then the following conditions are
equivalent"

1 ) P-kQ is $-.regular for any Q such that the order of P> the
order of Q,

(2) P() -0 and if a real (-O) satisfies the equation

P(v)-o,
then

(, (grad P)) (V)#-O, and

(3) P is of principal type and is hypo-$-regular.
Corollary 3. If P is no hypo-ellip$ic, then $here eiss an


