74. Quasi-Conformal Extension of Meier's Theorem

By Shinji YAMASHITA

Mathematical Institute, Tôhoku University

(Comm. by Kinjirô KUNUGI, M. J. A., March 12, 1970)

We shall show that the so-called Meier's topological analogue of Plessner's theorem ([5], Satz 5, cf. [2], p. 154) is true of quasi-conformal functions in U:|z|<1. A function w=f(z) defined in a plane domain G with its values in the w-sphere $\Omega:|w| \leq \infty$ is called quasiconformal (precisely, K-quasi-conformal) in G if f is of the composed form: $g \circ T(z)$, where $\zeta = T(z)$ is a K-quasi-conformal homeomorphism from G onto another plane domain G' and $w=g(\zeta)$ is meromorphic in G' (cf. [4], p. 250).

Let f(z) be a quasi-conformal function in U and let $e^{i\theta}$ be a point of $\Gamma:|z|=1$. Then the cluster set $C(f, e^{i\theta})$, an angular cluster set $C_d(f, e^{i\theta})$ and a chordal cluster set $C_{\rho(\varphi)}(f, e^{i\theta})$ are defined in the same manner as in [2] (pp. 1, 73 and 72), where Δ is the interior of a triangle in U with one vertex $e^{i\theta}$ (simply, "angle Δ at $e^{i\theta}$ ") and $\rho(\varphi)$ is a chord of Γ passing through $e^{i\theta}$ and making a directed angle φ , $|\varphi| < \pi/2$, with the radius to $e^{i\theta}$. A point $e^{i\theta} \in \Gamma$ is a Plessner point of f if $C_d(f, e^{i\theta}) = \Omega$ for any angle Δ at $e^{i\theta}$. A point $e^{i\theta} \in \Gamma$ is a Meier point of f if $C(f, e^{i\theta}) \neq \Omega$ and $C_{\rho(\varphi)}(f, e^{i\theta}) = C(f, e^{i\theta})$ for all φ , $|\varphi| < \pi/2$. We denote by I(f) (M(f), resp.) the set of all Plessner points (Meier points, resp.) of f.

We first prove a topological analogue of Fatou's theorem (cf. [5], Satz 6, [2], p. 154).

Theorem 1. Let f be a bounded quasi-conformal function in U. Then $\Gamma \setminus M(f)$ is of first Baire category on Γ .

Proof. We shall use the Schwarz lemma for quasi-conformal functions (cf. [3]) in the following form: Let h(z) be a K-quasi-conformal function in the disk $\delta(z_o, q): |z-z_o| < q$. If |h(z)| < M, M > 0 being a constant, in $\delta(z_o, q)$, then

(1)
$$|h(z)-h(z_o)| \leq 8Mq^{-1/K} |z-z_o|^{1/K}, \quad z \in \delta(z_o, q).$$

We let, for the proof, $h(z) = g \circ T(z)$, where T is a K-quasi-conformal self-homeomorphism of $\delta(z_o, q)$ with $z_o = T(z_o)$, which we may suppose, and g is holomorphic in $\delta(z_o, q)$. Then, Theorem 5, (9) of Mori [6] reads

$$|T(z) - T(z_o)| \leq 4q^{1-(1/K)} |z - z_o|^{1/K}.$$

Combined with the Schwarz lemma for the bounded g, this gives (1).