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1. Introduction. The concept of the quasi-minimal sets, intro-
duced by H. F. Hilmy [1], plays rather important roles for the inves-
tigation of the structure of the center of the compact dynamical
systems.

In this paper, we study mainly the three problems, i.e., (a) how a
quasi-minimal set contains minimal sets, (b) the qualities o these
minimal sets, (c) the behaviors of the orbits near these minimal sets.
Main results obtained are as follows"

Theorems 9 and 10 or (a),
Theorems 8, 12 and 13 or (b), and
Theorem 14 for (c).
2. Definitions and notations.
X" a compact metric space.
R" a real line.
r" X RX is a mapping which satisfies
1) 7 e C[X R],
2) z(x, 0)- x, and
3) 7((x, s), t)-7(x, s + t).
The triple (X,R, )is a compact dynamical system whose phase

space, phase group, and phase projection are X, R, and 7, respectively.
’(x)-{7(x, t) t e R} is the orbit passing through x e X.
+(x)--{(x, t) t>0} and .-(x)={(x, t); t_<0} are respectively

positive semi-orbit and negative semi-orbit from x e X.
A+(x)- ’+(r(x, t)) and A-(x)- ’-(7(x, t)) are the positive and

0t 0t
negative limit set o y(x), respectively.

y(x) is positively (negatively) Poisson stable if and only if
+(x) (x)# (-(x) (x)#).

y(x) is Poisson stable if and only if it is both positively and
negatively Poisson stable.

y(x) is positively (negatively) asymptotic i and only if y(x) A+(x)= and A+(x)# (7(x)A-(x)-d2 and A-(x)#).
A subset S of X is invariant if and only if ’(x)cS holds or any

xeS.
A closed and invariant set F is minimal if and only if it contains

no proper subsets which are closed and invariant.


