140. The Structure of Quasi-Minimal Sets

By Shigeo Kono

Department of Mathematics, Josai University

(Comm. by Kinjirô KUNUGI, M. J. A., June 12, 1970)

1. Introduction. The concept of the quasi-minimal sets, introduced by H. F. Hilmy [1], plays rather important roles for the investigation of the structure of the center of the compact dynamical systems.

In this paper, we study mainly the three problems, i.e., (a) how a quasi-minimal set contains minimal sets, (b) the qualities of these minimal sets, (c) the behaviors of the orbits near these minimal sets. Main results obtained are as follows:

Theorems 9 and 10 for (a),

Theorems 8, 12 and 13 for (b), and Theorem 14 for (c).

2. Definitions and notations.

- X: a compact metric space.
- R: a real line.

 $\pi: X \times R \rightarrow X$ is a mapping which satisfies

- 1) $\pi \in C[X \times R]$,
- 2) $\pi(x, 0) = x$, and
- 3) $\pi(\pi(x,s),t) = \pi(x,s+t).$

The triple (X, R, π) is a compact dynamical system whose phase space, phase group, and phase projection are X, R, and π , respectively.

 $\gamma(x) = \{\pi(x, t); t \in R\}$ is the orbit passing through $x \in X$.

 $\gamma^+(x) = \{\pi(x, t); t \ge 0\}$ and $\gamma^-(x) = \{\pi(x, t); t \le 0\}$ are respectively positive semi-orbit and negative semi-orbit from $x \in X$.

 $\Lambda^+(x) = \bigcap_{0 \le t} \overline{\gamma^+(\pi(x, t))}$ and $\Lambda^-(x) = \bigcap_{0 \ge t} \overline{\gamma^-(\pi(x, t))}$ are the positive and negative limit set of $\gamma(x)$, respectively.

 $\gamma(x)$ is positively (negatively) Poisson stable if and only if $\Lambda^+(x) \cap \gamma(x) \neq \phi$ $(\Lambda^-(x) \cap \gamma(x) \neq \phi)$.

 $\gamma(x)$ is Poisson stable if and only if it is both positively and negatively Poisson stable.

 $\gamma(x)$ is positively (negatively) asymptotic if and only if $\gamma(x) \cap \Lambda^+(x) = \phi$ and $\Lambda^+(x) \neq \phi$ ($\gamma(x) \cap \Lambda^-(x) = \phi$ and $\Lambda^-(x) \neq \phi$).

A subset S of X is invariant if and only if $\gamma(x) \subset S$ holds for any $x \in S$.

A closed and invariant set F is minimal if and only if it contains no proper subsets which are closed and invariant.