139. On Radicals of Semigroups with Zero. I

By Ferenc A. SzÁsz
Budapest
(Comm. by Kinjirô Kunugr, m. J. A., June 12, 1970)

The term "semigroup" means in this note always a semigroup with zero element (see [3]). Several concrete types of radicals for semigroups were proposed (see for instance [2], [3], [5]-[9] and [11]). By a ring theoretical analogy (see [4]) also a general theory of radicals for semigroups can be developed.

For any class C of semigroups a C-semigroup S means a semigroup belonging to C. If a semigroup S has a C-ideal $C(S)$ such that $\boldsymbol{C}(S)$ contains any further \boldsymbol{C}-ideal of S, then $\boldsymbol{C}(S)$ is called the \boldsymbol{C}-radical of S. Semigroups S with $C(S)=0$ are called C-semisimple. A class R of semigroups is called radical, if the following conditions are satisfied:

1) \boldsymbol{R} is homomorphically closed/not only with respect to forming of Rees factor semigroups/
2) in any semigroup S there exists the \boldsymbol{R}-radical $\boldsymbol{R}(S)$
3) the Rees factor semigroup $S / \boldsymbol{R}(S)$ is \boldsymbol{R}-semisimple.

The aim of this note is to generalize for semigroups some ringtheoretical results of [1] and [10].

Theorem 1. For any radical class \boldsymbol{R} of semigroups, and for any ideal \boldsymbol{J} of a semigroup S, the \boldsymbol{R}-radical $\boldsymbol{R}(\boldsymbol{J})$ of \boldsymbol{J} is an ideal of S.

Proof. Assuming that $R(J)$ is not an ideal of S, there exists an element $s \in S$ satisfying either $s \boldsymbol{R}(J) \nsubseteq \boldsymbol{R}(\boldsymbol{J})$ or $\boldsymbol{R}(J) s \notin \boldsymbol{R}(\boldsymbol{J})$. If $s \boldsymbol{R}(\boldsymbol{J})$ $\not \subset \boldsymbol{R}(J)$, then the union $\boldsymbol{U}=s \boldsymbol{R}(\boldsymbol{J}) \cup \boldsymbol{R}(\boldsymbol{J})$ properly contains $\boldsymbol{R}(J)$ and $\boldsymbol{U} \subseteq \boldsymbol{J}$ holds. By $\boldsymbol{J} \boldsymbol{U}=\boldsymbol{J} s \boldsymbol{R}(\boldsymbol{J}) \cup \boldsymbol{J} \boldsymbol{R}(\boldsymbol{J}) \subseteq \boldsymbol{R}(\boldsymbol{J})$ and $\boldsymbol{U} \subseteq \subseteq \boldsymbol{U}$ this union \boldsymbol{U} is an ideal of \boldsymbol{J}. Being $\boldsymbol{J} / \boldsymbol{R}(\boldsymbol{J}) \boldsymbol{R}$-semisimple, $\boldsymbol{U} / \boldsymbol{R}(\boldsymbol{J})$ is not an \boldsymbol{R}-semigroup.

By $\varphi_{1}(r)=s r \cup \boldsymbol{R}(\boldsymbol{J})(r \in \boldsymbol{R}(\boldsymbol{J}))$ is given a mapping of $\boldsymbol{R}(\boldsymbol{J})$ onto $\boldsymbol{U} / \boldsymbol{R}(\boldsymbol{J})$, which by the associativity and

$$
\begin{aligned}
\varphi_{1}\left(r_{1}, r_{2}\right) & =s r_{1} r_{2} \cup \boldsymbol{R}(\boldsymbol{J})=\boldsymbol{R}(\boldsymbol{J}) \\
& =s r_{1} s, r_{2} \cup \boldsymbol{R}(\boldsymbol{J})=\varphi_{1}\left(r_{1}\right), \varphi_{1}\left(r_{2}\right)
\end{aligned}
$$

is a homomorphism. Being $\boldsymbol{R}(J)$ radical and $\boldsymbol{U} / \boldsymbol{R}(\boldsymbol{J})$ nonradical nonzero semigroups, respectively, this contradiction shows $\operatorname{SR}(\boldsymbol{J}) \subseteq \boldsymbol{R}(J)$. Similarly can be verified also $\boldsymbol{R}(\boldsymbol{J}) \boldsymbol{S} \subseteq \boldsymbol{R}(J)$.

Corollary 2. With the above notations $\boldsymbol{R}(J) \subseteq \boldsymbol{J} \cap \boldsymbol{R}(S)$ holds.
Proof. $R(J)$ is an R-ideal of S, contained in $R(S)$.
Corollary 3. Any ideal of an \boldsymbol{R}-semisimple semigroup is again

