179. On Some Invariant Subspaces

By Yoshiki OHNO

The College of General Education, Tohoku University, Sendai

(Comm. by Kinjirô KUNUGI, M. J. A., Sept. 12, 1970)

Let X be a compact Hausdorff space and let A be a function algebra on X. Throughout this paper, ϕ will be a fixed multiplicative linear functional on A which admits a unique representing measure m. Further we assume that the Gleason part of ϕ is non trivial. We denote by A_0 the maximal ideal associated with ϕ ; $A_0 = \{f \in A : \phi(f) = 0\}$. Let $H^2 = H^2(dm)$ be the closure $[A]_2$ of A in $L^2 = L^2(dm)$. We put $H_0^2 = \{f \in H^2; \int f dm = 0\}$. We shall refer to Browder [1] for the abstract function theory in this situation.

Let M be a closed subspace of H^2 . M is called simply invariant if $[A_0M]_2 \subset M$. We call M complementary invariant if $H^2 \ominus M$, the orthogonal complement of M in H^2 , is simply invariant. The purpose of this paper is a characterization of the complementary invariant subspace.

It is well known that L^2 admits the orthogonal decomposition $L^2 = H^2 \oplus \overline{H}_0^2$, where the bar denotes the complex conjugation. We denote by P the orthogonal projection of L^2 onto H^2 As Wermer has shown, there exists an inner function Z such that $H_0^2 = ZH^2$. (See [1] Lemma 4.4.3 for our situation.) We define the backward shift operator T on H^2 by

$$Tf = rac{f - \int f dm}{Z} \quad (f \in H^2).$$

Theorem. The complementary invariant subspaces of H^2 are precisely the subspaces of the form

$$P[Tq \cdot \bar{H}^2],$$

where q is an inner function. q is determined by the subspace up to a constant factor.

Proof. Let M be a complementary invariant subspace of H^2 . Then $N = H^2 \ominus M$ is a simply invariant subspace of H^2 . Therefore, by the generalized Beurling theorem (for instance, see [1] Theorem 4.3.5), N has the form $N = qH^2$, where q is inner. For simplicity, we put h = Tq. Evidently $h \in L^{\infty} \cap H^2$. Since $\int Zdm = 0$ and q is inner, we have