176. On the Williamson's Conjecture

By Tetsuhiro SHIMIZU

Department of Mathematics, Tokyo Institute of Technology

(Comm. by Kinjirô KUNUGI, M. J. A., Sept. 12, 1970)

1. Let G be a non-discrete locally compact abelian group with the dual group Γ of G. We will denote by M(G) the Banach algebra of all bounded regular Borel measures on G under the convolution multiplication.

It is known that there exists a compact commutative topological semigroup S and an order preserving isometric-isomorphism θ of M(G) into M(S) such that:

(a) if $\mu \in M(G)$, $\nu \in M(S)$ and ν is absolutely continuous with respect to $\theta \mu$, then there is $\omega \in M(G)$ such that $\theta \omega = \nu$: and

(b) each multiplicative linear functional h on M(G) has the form

$$h(\mu) = \int_{S} f d\theta \, \mu \qquad (\mu \in M(G))$$

for an unique nonzero continuous semicharacter f on S (cf. [4]).

The set of all nonzero continuous semicharacters on S is denoted by \hat{S} . We may consider \hat{S} to be the maximal ideal space of M(G). Furthermore, \hat{S} is a compact semigroup and Γ may be considered to be the maximal group at the identity of \hat{S} (cf. [5]).

We denote by Δ the subset of \hat{S} consisting of functionals symmetric in the sense that $\hat{\mu}^*(f) = \overline{\hat{\mu}(f)}$ for any $\mu \in M(G)$, where * denotes the usual involution on M(G). Let $M(\Delta) = \{\mu \in M(G) : \hat{\mu}(f) = 0 \text{ for all } f \in \hat{S} \setminus \Delta\}.$

Let $M_{c}(G)$ denote the algebra of all continuous measures of M(G).

Our purpose is to show that the following *Williamson's conjecture* (cf. [6]) is true.

Williamson's conjecture: If $\mu \in M(\varDelta)$, then $\mu \in M_c(G)$.

2. By (a), if $f \in \hat{S}$ and $\mu \in M(G)$, then there is a measure $\mu_f \in M(G)$ such that $d\theta \mu_f = f d\theta \mu$.

The following lemmas are essential to prove that Williamson's conjecture is true.

Lemma 1. If $f \in \Gamma$ and $\mu \in M(G)$, then $d\theta \mu_f^* = f d\theta \mu^*$.

Lemma 2. If $f \in \Gamma$ and $g \in \hat{S} \setminus \Delta$, then $fg \in \hat{S} \setminus \Delta$.

For any $f \in \hat{S}$, let $S_f = \{s \in S : f(s) \neq 0\}$ and let $J_f = \{s \in S : f(s) = 0\}$.

Theorem 3. If $g \in \hat{S} \setminus \Delta$ and $\mu \in M(\Delta)$, then $\theta \mu|_{sg}$, the restriction to S_g of $\theta \mu$, is zero measure. In particular, $M(\Delta) \subset M_c(G)$.

From this, it follows that: