# 173. On a Conjecture of K. S. Williams 

By Saburô Uchiyama<br>Department of Mathematics, Shinshû University, Matsumoto<br>(Comm. by Kinjirô Kunugi, m. J. A., Sept. 12, 1970)

1. Let $p$ be a rational prime and $n$ a positive integer $\geqq 2$. We denote by $\alpha_{n}(p)$ the least positive integral value of $a$ which makes the polynomial $x^{n}+x+a$ irreducible $(\bmod p)$. In a recent paper [3] K. S. Williams conjectured that for all $n \geqq 2$ one has

and showed (among others) that (1) is true for $n=2$ and 3 . In the present note we shall prove that (1) is true for $n=4,6,9,10$ and for all primes $n \equiv 1(\bmod 3)$. However, it is immediately clear that (1) is not true for some (in fact, infinitely many) values of $n$. Indeed, the polynomial $x^{n}+x+1$ is irreducible in $Z[x]^{*)}$ if and only if $n=2$ or $n \not \equiv 2$ $(\bmod 3)$, and for $n \equiv 2(\bmod 3) x^{n}+x+1$ has the obvious factor $x^{2}+x+1$ (cf. [2]). Thus, we can show that for $n=5$

$$
\begin{equation*}
\liminf _{p \rightarrow \infty} a_{5}(p)=3 \tag{2}
\end{equation*}
$$

and for $n=8$

$$
\liminf _{p \rightarrow \infty} a_{8}(p)=2
$$

2. Our foundation is on the following important theorem due to F. G. Frobenius [1].

Theorem. Let $f(x)$ be a square-free polynomial (i.e. a polynomial with non-zero discriminant) of degree $n \geqq 1$ in $Z[x]$, and let $d_{1}, \cdots, d_{r}$ ( $r \geqq 1$ ) be positive integers with $d_{1}+\cdots+d_{r}=n$. Then, if the Galois group of $f(x)$, as a permutation group on $n$ letters, contains a permutation which is decomposed as the product of $r$ cycles of length $d_{1}, \cdots, d_{r}$, there are infinitely many primes $p$ such that we have

$$
\begin{equation*}
f(x) \equiv f_{1}(x) \cdots f_{r}(x) \quad(\bmod p) \tag{4}
\end{equation*}
$$

where $f_{1}(x), \cdots, f_{r}(x)$ are polynomials of $Z[x]$, each irreducible $(\bmod p)$, of degree $d_{1}, \cdots, d_{r}$, respectively.

In fact, it is proved in [1] that the Dirichlet density of prime numbers $p$ for which (4) holds equals the number of permutations in the Galois group of $f(x)$ that have $r$ cycles of length $d_{1}, \cdots, d_{r}$, divided by the order of the group.

By virtue of this theorem, a simple and well-known argument on the reduction $(\bmod p)$ of the Galois group of $f(x)$ will show that the

[^0]
[^0]:    *) We denote by $Z$, as usual, the ring of rational integers.

