228. Permutation Polynomials in Several Variables over Finite Fields

By Harald Niederreiter
Department of Mathematics, Southern Illinois University, Carbondale, Ill., U. S. A.

(Comm. by Kinjirô Kunugi, m. J. A., Nov. 12, 1970)

Let $K=G F(q)$ be a Galois field with q elements, $q=p^{s}, p$ prime, $s \geq 1$. Let K^{n} denote the Cartesian product of n copies of K. The following definition is basic for our further investigation:

Definition 1. A polynomial $f \in K\left[x_{1}, \cdots, x_{n}\right]$ is called a permutation polynomial (in n variables over K) if the equation $f\left(x_{1}, \cdots, x_{n}\right)$ $=\alpha$ has q^{n-1} solutions in K^{n} for each $a \in K$.

For $n=1$, this coincides with the well-known notion of a permutation polynomial in one variable ([3], ch. 5 ; [1]; [6]). We shall characterize the permutation polynomials of degree at most two such that they can be determined effectively. For rather obvious reasons, the cases $p \neq 2$ and $p=2$ have to be distinguished.

The prime field $G F(p)$ of K can be identified with the residue class field $Z /(p)$. We shall freely use this identification in the sequel. In particular, the trace $\operatorname{tr}(a)$ of an element $a \in K$ relative to the extension $K / G F(p)$ can be viewed as an integer modulo p. Throughout this paper, ξ will always stand for a fixed primitive p-th root of unity. The following criterion is crucial:

Theorem 1. $f \in K\left[x_{1}, \cdots, x_{n}\right]$ is a permutation polynomial if and only if

$$
\sum_{\left(a_{1}, \ldots, a_{n)}\right) \in K^{n}} \xi^{\operatorname{tr}\left(b f\left(a_{1}, \cdots, a_{n}\right)\right)}=0 \quad \text { for all non-zero } b \in K .
$$

Proof. We have

$$
\sum_{\left(a_{1}, \cdots, a_{n}\right) \in K^{n}} \xi^{\operatorname{tr}\left(b f\left(a_{1}, \cdots, a_{n}\right)\right)}=\sum_{a \in K} N(a) \xi^{\operatorname{tr}(b a)} \quad \text { for all } b \in K
$$

where $N(a)$ is the number of solutions in K^{n} of $f\left(a_{1}, \cdots, a_{n}\right)=a$. If f is a permutation polynomial, then $N(a)=q^{n-1}$ for all $a \in K$ and so for all non-zero $b \in K$:

$$
\sum_{\left(a_{1}, \cdots, a_{n}\right) \in K^{n}} \xi^{\operatorname{tr}\left(b f\left(a_{1}, \cdots, a_{n}\right)\right)}=q^{n-1} \sum_{a \in K} \xi^{\operatorname{tr}(b a)}=q^{n-1} \sum_{c \in K} \xi^{\operatorname{tr}(c)}=0 .
$$

Conversely, suppose that the condition of the theorem is satisfied. Then for all $a \in K$:

$$
\begin{aligned}
N(a) & =\frac{1}{q} \sum_{\left(a_{1}, \ldots, a_{n}\right) \in K^{n}} \sum_{b \in K} \xi^{\operatorname{tr[b(f(f(a_{1},\cdots ,a_{n})-a)]}} \\
& =\frac{1}{q} \sum_{\left(a_{1}, \cdots, a_{n}\right) \in K^{n}} \sum_{b \in K} \xi^{\operatorname{tr}\left(b f\left(a_{1}, \cdots, a_{n}\right)\right)} \xi^{\operatorname{tr}(-a b)}
\end{aligned}
$$

