226. On Realization of the Discrete Series for Semisimple Lie Groups

By Ryoshi HOTTA

(Comm. by Kunihiko Kodaira, M. J. A., Nov. 12, 1970)

This note is an announcement of a result, which says, briefly, that most of the discrete series for a semisimple Lie group are realized as certain eigenspaces of the Casimir operator on the symmetric space (Theorem 2). This construction is in some sense a generalization of the methods adopted in [1], [2], [9] for special groups and in [5] for the groups of hermitian type. Also, [6] indicates the above method of realization. Further, as for alternative methods to realize most of the discrete series, we refer to the recent works [5], [8]. Our technique used here depends heavily on that of [5]. A detailed exposition with full proofs will appear elsewhere.

Let G be a connected non-compact semisimple Lie group with a compact Cartan subgroup. We assume, for convenience, that G has a faithful finite dimensional representation and its complexification G^{c} is simply connected. Fix a maximal compact subgroup K of G and a Cartan subgroup H contained in K. We denote by $\mathfrak{g}, \mathfrak{f}$ and \mathfrak{h} the Lie algebras corresponding to G, K and H respectively. For complexifications g^c , f^c , h^c of g, f, h, we denote by Δ the root system of (g^c, h^c) , and by W_G the Weyl group of $(\mathfrak{f}^C, \mathfrak{h}^C)$. Taking a positive root system P of Δ fixed once for all, P_k (resp. P_n) denotes the set of a positive compact (resp. non-compact) roots. Let L be the character group of H, L'the set of regular elements in L. Introducing an inner product (,) on L induced by the Killing form, we put $\varepsilon(\lambda) = \text{sign } \prod_{\alpha \in P} (\lambda, \alpha)$ for $\lambda \in L'$, and $\varepsilon(\lambda) = 0$ for $\lambda \in L - L'$. We also put $\varepsilon_k(\lambda) = \text{sign } \prod_{\alpha \in P_k} (\lambda, \alpha)$ if $\lambda \in L$ is \mathfrak{k}^{C} -regular, and $\varepsilon_{k}(\lambda)=0$ if λ is \mathfrak{k}^{C} -singular. For discrete series, the following fact is known by Harish-Chandra [3]. Let \mathcal{E}_d be the discrete series for G. For $\lambda \in L'$, there then exists a unique element $\omega(\lambda) \in \mathcal{E}_d$, and the map $L' \ni \lambda \mapsto \omega(\lambda) \in \mathcal{E}_d$ is surjective, while $\omega(\lambda) = \omega(\lambda')$ if and only if there exists $w \in W_G$ such that $w\lambda = \lambda'$. We shall denote by $\Theta_{\omega(\lambda)}$ the character of $\omega(\lambda)$.

For a finite subset A of L, we shall denote by |A| its cardinal number and put $\langle A \rangle = \sum_{\alpha \in A} \alpha$. Put $\rho = \langle P \rangle / 2$, $\rho_k = \langle P_k \rangle / 2$ and $\rho_n = \rho - \rho_k$. If $\varepsilon_k(\lambda + \rho_k) \neq 0$ for $\lambda \in L$, there exists a unique $w \in W_G$ such that $w(\lambda + \rho_k) - \rho_k$ is k^c -dominant. We then denote by $[\lambda]$ the equivalence class to which belongs an irreducible K-module with highest weight