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226. On Realization of the Discrete Series
for Semisimple Lie Groups

By Ryoshi HoOTTA
(Comm. by Kunihiko KODAIRA, M. J. A., Nov. 12, 1970)

This note is an announcement of a result, which says, briefly, that
most of the discrete series for a semisimple Lie group are realized as
certain eigenspaces of the Casimir operator on the symmetric space
(Theorem 2). This construction is in some sense a generalization of
the methods adopted in [1], [2], [9] for special groups and in [5] for the
groups of hermitian type. Also, [6] indicates the above method of
realization. Further, as for alternative methods to realize most of the
discrete series, we refer to the recent works [5],[8]. Our technique
used here depends heavily on that of [5]. A detailed exposition with
full proofs will appear elsewhere.

1. Let G be a connected non-compact semisimple Lie group with
a compact Cartan subgroup. We assume, for convenience, that G has
a faithful finite dimensional representation and its complexification G°
is simply connected. Fix a maximal compact subgroup K of G and a
Cartan subgroup H contained in K. We denote by g,f and §j the Lie
algebras corresponding to G, K and H respectively. For complexifi-
cations g¢, 1%, 45 of g,t, 5, we denote by 4 the root system of (g¢, §°),
and by W, the Weyl group of (¥¢,§°). Taking a positive root system
P of 4 fixed once for all, P, (resp. P,) denotes the set of a positive com-
pact (resp. non-compact) roots. Let L be the character group of H, L’
the set of regular elements in L. Introducing an inner product (,) on
L induced by the Killing form, we put e(4)=sign [[,cr (4, @) for 1¢ L/,
and e()=0 for Le L—L’. We also put ¢,(A)=sign [[,cp, (4, ) if 2e L
is f¢-regular, and &,(1)=0 if A is f°-singular. For discrete series, the
following fact is known by Harish-Chandra [3]. Let &, be the discrete
series for G. For e L/, there then exists a unique element w(4) € &,,
and the map L’ s A—~w(4) € £, is surjective, while w()=w(A) if and
only if there exists w e W, such that wAi=4'. We shall denote by 6,,,
the character of w(4).

For a finite subset A of L, we shall denote by |A| its cardinal num-
ber and put {A>=3> .., a. Put p={P>/2, 0,=<{(P;>/2 and p,=p— ps.
If e,(A+0)#0 for 2¢ L, there exists a unique we W, such that
w(A+ px)—pi is k°-dominant. We then denote by [4] the equivalence
class to which belongs an irreducible K-module with highest weight



