258. On Fractional Powers of the Stokes Operator

By Hiroshi FUJITA and Hiroko MORIMOTO University of Tokyo

(Comm. by Kunihiko KODAIRA, M. J. A., Dec. 12, 1970)

1. Introduction and summary. The present paper is concerned with the so-called Stokes operator described below. Our objective is to prove a theorem concerning domains of fractional powers of the Stokes operator. This theorem has some applications to the Navier-Stokes equation [4], as is expected from important roles played by the fractional powers of the Stokes operator in recent works on the Navier-Stokes equation. For instance, see Sobolevskii [11, 12], Kato-Fujita [7], Fujita-Kato [3], and Masuda [10]. Moreover, we hope that the theorem is of some interests also from the view point of theory of fractional powers of operators and theory of interpolation of spaces.

Let Ω be a bounded domain in \mathbb{R}^m with smooth boundary $\partial \Omega$. By L we denote $L_2(\Omega)$ of real *m*-vector functions defined in Ω . $C_{0,\sigma}^{\infty}$ is the set of all vector functions $\varphi \in C^{\infty}(\Omega)$ with div $\varphi = 0$ and supp $\varphi \subset \Omega$. We put

> H_{σ} = the closure of $C_{0,\sigma}^{\infty}$ in $L_2(\Omega)$, H_{σ}^1 = the closure of $C_{0,\sigma}^{\infty}$ in $W_2^1(\Omega)$.

Here, $W_2^l(\Omega)$ means the Sobolev space of order l. The orthogonal projection from L onto H_σ is denoted by P. The operator $A_0 = -P\Delta$ with domain $C_{0,\sigma}^{\infty}$ is positive and symmetric in the Hilbert space H_σ . The Friedrichs extension A of A_0 is called the *Stokes operator* in Ω . A is positive and self-adjoint. It should be noted that Au = Pf $(f \in L)$ implies that

(1.1)
$$\begin{cases} \Delta u - \nabla p = -f & \text{in } \mathcal{Q}, \\ \operatorname{div} u = 0 & \operatorname{in } \mathcal{Q}, \\ u|_{\partial \mathcal{Q}} = 0 \end{cases}$$

with some scalar function p. Actually, it is known [2, 8] that (1.2) $\mathcal{D}(A) = W_2^2(\Omega) \cap H_a^1$,

where $\mathcal{D}(A)$ is the domain of the operator A. On the other hand, we put $B = -\Delta$ with

(1.3) $\mathcal{D}(B) = W_2^2(\Omega) \cap H^1,$

where H^1 is the set of all $u \in W_2^1(\Omega)$ satisfying $u|_{\partial \Omega} = 0$. Obviously, B is a positive self-adjoint operator in L.

Our theorem now reads:

Theorem 1.1. Let A and B be as above. Then for any α in $0 < \alpha < 1$, we have