255. The Decomposition of $L^2(\Gamma \setminus SL(2, \mathbb{R}))$ and Teichmüller Spaces

By Noriaki KAWANAKA

Department of Mathematics, Osaka University

(Comm. by Kunihiko KODAIRA, M. J. A., Dec. 12, 1970)

0. Let Γ be a discrete subgroup of $G = SL(2, \mathbb{R})/\{\pm e\}$ and let χ be a finite dimensional representation of Γ by unitary matrices. We assume that $\Gamma \setminus G$ is compact.

It is well known that the unitary representation $U^{r,\chi}$ of G induced from χ can be decomposed into the discrete direct sum $\sum_i \oplus U_i$ of irreducible unitary representations U_i of G. We call the set $\{U_i\}$ the spectra of $U^{r,\chi}$.

The problem we want to study is the following¹:

"How do the spectra of $U^{\Gamma, \chi}$ behave when Γ varies?"

Detailed proofs will appear elsewhere.

1. Let $H = \{z = x + iy; y > 0\}$ be the complex upper half plane. G acts on H transitively by

$$g(z) = \frac{az+b}{cz+d}$$

for z in H and $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in G.

The G-invariant metric on H is

$$ds^{\scriptscriptstyle 2}{=}rac{dx^{\scriptscriptstyle 2}{+}dy^{\scriptscriptstyle 2}}{y^{\scriptscriptstyle 2}}.$$

Hence, the G-invariant measure on H is

$$dm(z) = \frac{dxdy}{u^2}$$

and the ring of G-invariant differential operators on H is generated by

(1)
$$\varDelta = -y^2 \Big(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \Big).$$

2. Let V be the representation space of χ . Consider the complex vector space $\mathcal{H}(\Gamma, \chi)$ of all V-valued functions F on H wich satisfy the following conditions:

- (i) F is (componentwisely) measurable;
- (ii) $F(AZ) = \chi(A)F(z)$ for all z in H and A in Γ ;
- (iii) $\int_{\mathscr{F}} {}^{t}F(z)\overline{F(z)}dm(z) < \infty$ where \mathscr{F} is a measurable fundamental

¹⁾ Note that some problems of the similar nature were also discussed by J. M. G. Fell [3].