28. Angular Cluster Sets and Horocyclic Angular Cluster Sets

By Hidenobu YOSHIDA Department of Mathematics, Chiba University, Chiba

(Comm. by Kinjirô KUNUGI, M. J. A., Jan. 12, 1971)

1. In [1] Bagemihl began a study of relations between nontangential (angular) boundary behaviors and horocyclic boundary behaviors of meromorphic functions defined in the open unit disk D of the complex plane. This study has been continued by Dragosh in [2] and [3]. The purpose of the present paper is to sharpen some of results of these investigations by the method of Dolzhenko's paper.

Notation and definitions. Unless otherwise stated, $f: D \rightarrow W$ shall mean f(z) is an arbitrary function (generally not unique) defined in the open unit disk D: |z| < 1 and assuming values in the extended complex plane W. The unit circle |z|=1 is denoted by Γ .

A circle internally tangent to Γ at a point $\zeta \in \Gamma$ is called a horocycle at ζ , and will be denoted by $h_r(\zeta)$, where $r \ (0 < r < 1)$ is the radius of the horocycle.

Given a horocycle $h_r(\zeta)$ at a point $\zeta \in \Gamma$, the region interior to $h_r(\zeta)$ is called an oricycle at ζ , and will be denoted by $K_r(\zeta)$, or simply $K(\zeta)$ without specifying r. The half of $K_r(\zeta)$ lying to the right of the radius at ζ as viewed from the origin will be denoted by $K_r^+(\zeta)$ and $K_r^-(\zeta)$ denotes the left half of $K_r(\zeta)$ analogously.

Suppose that $0 < r_1 < r_2 < 1$. Let $r_3(0 < r_3 < 1)$ be so large that the circle $|z| = r_3$ intersects both of the horocycles $h_{r_1}(\zeta)$ and $h_{r_2}(\zeta)$. We define the right horocyclic angle $H^+_{r_1, r_2, r_3}(\zeta)$ at ζ with radii r_1, r_2, r_3 to be $H^+_{r_1, r_2, r_3}(\zeta) = \operatorname{com}(\overline{K^+_{r_1}(\zeta)}) \cap K^+_{r_2}(\zeta) \cap \{z : |z| \ge r_3\},$

where the bar denotes closure and comp denotes complement, both relative to the plane. The corresponding left horocyclic angle is denoted $H_{r_1,r_2,r_3}(\zeta)$. We write $H_{r_1,r_2,r_3}(\zeta)$ to denote a hyrocyclic angle at ζ without specifying whether it be right or left, or simply $H(\zeta)$ in the event r_1, r_2, r_3 are arbitrary.

We assume the reader to be familiar with the rudiments of the cluster sets.

 $C_{V}(f, \zeta)$, the angular cluster set of f(z) at ζ on a Stolz angle $V(\zeta)$;

 $C_{K}(f,\zeta)$, the oricyclic cluster set of f(z) at ζ on an oricycle $K(\zeta)$;

 $C_H(f,\zeta)$, the horocyclic angular cluster set of f(z) at ζ on a horocyclic angle $H(\zeta)$.

A point $\zeta \in \Gamma$ is said to be a horocyclic angular Plessner point