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54. Functional Dimension of Tensor Product

By Shigeo TAKENAKA

(Comm. by Kinjir6 KUNUGI, M. Z. .., Feb. 12, 1971)

1. Introduction. The purpose of this paper is to give a proof
to the fact that the functional dimension of the tensor product of
two topological vetcor spaces is equal to the sum of their functional
dimensions.

A. N. Kolmogorov [l] showed that the asymptotic behavior of
number of elements of a minimal e-net of a totally bounded subset in
a topological vector space plays the role of dimension of the space. He
[2] also introduced the notions of the approximative dimension and the
functional dimension of topological vector spaces. The functional
dimension is not trivial for a-Hilbert nuclear spaces as is shown in
I. M. Gel’land’s book [3].

In this paper we modify the definition of the functional dimension
de of a-Hilbert nuclear spaces to the number which is equal to the
functional dimension (defined by Kolmogorov) minus 1, and we prove
the following theorem"

Theorem. Let E1 and E2 be a-Hilbert nuclear spaces. Then
df(E(R)Ef)-- df(E1) + d(EO.

The author of the present paper expresses his thanks to Professors
H. Yoshizawa and N. Tatsuuma for their discussions on this problem.

2. Notations. We follow notations used by Kolmogorov [4].
Let E be a topological vector space, K be a totally bounded subset of
E and S be its convex absorbing and barrelled neighbourhood of 0 in
E. Then we call e-entropy H,(S, K) of K (with respect to S) the infimum
of logarithm of number of e-nets of K (with respect to S); that is,

H,(S,K)--inf {log ( N) NE, Vk e K, n e N, k e n+S}.
We use the following notations for infinitesimals" f(x) g(x) means

lira g(x)/f(x) < + f(x) g(x) means f(x) g(x) and f(x) g(x) f(x)
t2(g(x)) means lira (f(x)) / g(x)-- O.

In this paper the notation log stands for the logarithm with respect
to the base 2.

3. Theorem of Mit]ragin and a-Hilbert nuclear spaces. We
define as follows" The set 6" is called {a}-ellipsoid when ={() e (/z);
,nlanlZ<=l}, where {a} is a monotonous increasing series of such
numbers a that a>_ 1 and lim a--c the function re(t) is defined by

the formula re(t)= sup {n; a<= t} let S be the unit ball in (l).


