197. Remarque sur les espaces fonctionnels au noyau besselien

Par Masayuki ITÔ Institut Mathématique d'Université de Nagoya (Comm. by Kinjirô Kunugi, M. J. A., June 12, 1971)

1. Soit R^n l'espace euclidien à $n \geq 2$ dimensions. Rappelons que le noyau besselien $G_{2\alpha}$ d'ordre 2α sur R^n est une fonction positive, continue au sens large dans R^n et dont la transformation de Fourier est de la forme

$$\hat{G}_{2\alpha}(x) = (1+|x|^2)^{-\alpha},$$

où α est un nombre positif (voir [1]). Il est caractérisé, d'autre part, par le noyau reproduit de l'espace fonctionnel $P^{\alpha}(R^n)$ sur R^n , qui est obtenu par la complété de $C_0^{\infty}(R^n)$ par la norme

$$||u||_{2\alpha} = \left(\int |\hat{u}(x)|^2 (1+|x|^2)^{\alpha} dx\right)^{1/2}$$

(voir l'article cité ci-dessus). Notons $T_{2\alpha}$ la distribution sur R^n dont la transformation de Fourier est égale à $(1+|x|^2)^{\alpha}$. Alors $T_{2\alpha}*G_{2\alpha}=\varepsilon$, où ε est la mesure de Dirac à l'origine.

Pour un ouvert Ω de R^n , $C_0^\infty(\Omega)$ désigne l'espace de fonctions numériques, infiniment dérivables dans R^n et à support compact dans Ω . En complétant $C_0^\infty(\Omega)$ par la présente norme, on obtient l'espace fonctionnel régulier $P^\alpha(\Omega)$ sur Ω , qui s'appelle l'espace fonctionnel au noyau besselien d'ordre 2α sur Ω (voir [4]). On note $E_\alpha(\Omega)$ l'ensemble de mesures positives μ dans Ω , à support compact et avec $\iint G_{2\alpha}(x-y) d\mu(y) d\mu(x) < +\infty$. Alors, pour toute μ de $E_\alpha(\Omega)$, il existe le potentiel $U_{2\alpha}^\alpha \mu$ de μ dans $P^\alpha(\Omega)$.

On note

$$G_{2a}^{\varrho}(x,y) = \int \cdots \int G_{2(a-p)}^{\varrho}(x,z_1) G_{2}^{\varrho}(z_1,z_2) \cdots G_{2}^{\varrho}(z_p,y) dz_1 \cdots dz_p,$$

où p est un entier non-négatif tel que $0 < \alpha - p \le 1$ et $G_{2(\alpha-p)}^{\varrho}$ (resp. G_{2}^{ϱ}) est la fonction greenienne dans Ω obtenue par le balayage relatif au noyau $G_{2(\alpha-p)}$ (resp. G_{2}). Alors $G_{2\alpha}^{\varrho}$ posséde les même propriétés que la fonction greenienne ordinaire.

I. Higuchi a montré, dans son article [4], que s'il existe un ouvert non-vide et borné Ω de R^n tel que $G_{2\alpha}^{\varrho}$ soit le noyau reproduit de $P^{\alpha}(\Omega)$, alors $0 < \alpha \le 1$.

Cela pourra être amélioré comme la proposition suivante:

Proposition. Soit a un nombre positif. Alors les trois énoncés