189. On the Bessel Kernel for a Domain

By Isao HIGUCHI Suzuka College of Technology (Comm. by Kinjirô KUNUGI, M. J. A., May 12, 1971)

1. Aronszajn and Smith [2] developed the theory of Bessel potentials from the standpoints of their functional spaces and functional completions [1]. Let $P^{\alpha}(R^n)$ be the functional completion of $C_0^{\infty}(R^n)$ with the norm $||u||_{\alpha}^2 = \int (1+|\xi|^2)^{\alpha} |\hat{u}(\xi)|^2 d\xi$. They showed that $P^{\alpha}(R^n)$ has the reproducing kernel $G_{2\alpha}(x-y)$ determined by

$$G_{2\alpha}(x) = \frac{1}{2^{(n+2\alpha-2)/2} \pi^{n/2} \Gamma(\alpha)} K_{(n-2\alpha)/2}(|x|) |x|^{(2\alpha-n)/2}$$

where $K_{(n-2\alpha)/2}$ is the modified Bessel function of third kind. The purpose of this paper is to consider the kernel of functional completion $P^{\alpha}(\Omega)$ of $C_{0}^{\infty}(\Omega)$ with the norm $||u||_{\alpha}$. Making use of the methods of general balayage and the theory of α -harmonic functions introduced by M. Itô [6], we define the Green function $G_{2\alpha}^{\varrho}(x, y)$ and α -harmonic functions in the theory of Bessel potentials. Let $E_{2\alpha}(\Omega)$ be the class of all positive measures of finite energy with compact support contained in Ω , $U_{2\alpha}^{\mu}$ be the potential of $\mu \in E_{2\alpha}(\Omega)$ in the functional space $P^{\alpha}(\Omega)$ and $G_{2\alpha}^{\varrho}(x, y)$ (resp. $\check{G}_{2\alpha}^{\varrho}(x, y) = G_{2\alpha}^{\varrho}(y, x)$). We shall prove the following results.

(1) Let Ω be a domain in \mathbb{R}^n . Then for every $\mu \in E_{2\alpha}(\Omega)$, there exists an α -harmonic function $H_{2\alpha}^{\mu}(x)$ in Ω such that

$$U_{2\alpha}^{\mu}(x) = G_{2\alpha}^{\varrho} \mu(x) + H_{2\alpha}^{\mu}(x).$$

(2) The following conditions are equivalent:

(a) There exists a bounded domain $\Omega(\neq \emptyset)$ in \mathbb{R}^n such that the Green function $G_{2\alpha}^{\Omega}(x, y)$ is the kernel of the functional space $P^{\alpha}(\Omega)$ i.e., $U_{2\alpha}^{\mu} = G_{2\alpha}^{\Omega} \mu$ in $P^{\alpha}(\Omega)$ for every $\mu \in E_{2\alpha}(\Omega)$.

(b) There exist a bounded domain Ω in \mathbb{R}^n and a measure $\mu(\neq 0) \in E_{2\alpha}(\Omega)$ such that $G_{2\alpha}^{\Omega} \mu \in P^{\alpha}(\Omega)$ and $G_{2\alpha}^{\Omega} \mu = \check{G}_{2\alpha}^{\Omega} \mu$ in $P^{\alpha}(\Omega)$.

(c) $0 < \alpha \leq 1$.

2. According to Aronszajn and Smith [2], we define the Bessel potentials and summarize the results obtained in [2].

Definition 1. The Bessel potential of order 2α , $\alpha > 0$, of a positive measure μ is defined by $G_{2\alpha}\mu(x) = \int G_{2\alpha}(x-y)d\mu(y)$. We denote by $E_{2\alpha}(\mathbb{R}^n)$ the class of all positive measures for which the 2α -energy