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This note is a continuation of a recent paper of the author [8].
In this series some important results about bi-ideals o semigroups are
summarized and some new results are announced. We adopt the
standard notation and terminology due to A. H. Clifford and G. B.
Preston [3].

Theorem 1. Let S be a semigroup. Suppose that B is a bi-ideal,
T is a subsemigroup of S, and the intersection A--B T is not empty.
Then A is a bi-ideal of T.

This is a consequence of a theorem concerning (m, n)-ideals (cf. the
author [7], Theorem 1).

The following result shows that the existence o proper bi-ideal (in
some cases) implies that of proper left (and right) ideal.

Theorem 2. Suppose that A is a proper bi-ideal of a semigroup
S, not being a left (right) ideal of S. Then the product BS (SB) is a
proper right (left) ideal of S.

The author proved the following statement [6].
Theorem 3. Let S be a regular semigroup. Then every bi-ideal

of S is a quasi-ideal, and conversely.
K. M. Kapp [5] proved the ollowing two results.
Theorem 4. If S is a left simple semigroup, then every bi-ideal

B of S is a right ideal.
Theorem 5. Let S be a semigroup with zero. If S is left O-

simple, then the sets of bi-ideals and quasi-ideals of S coincide.
The ollowing example shows that there exists such a bi-ideal

which is not quasi-ideal.

Example 1o Let S be the semigroup o four elements 0, 1, 2, 3
with multiplication table

0 1 2 3

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 2

It is easy to see that the subsemigroup B= {0, 2} is a bi-ideal of S


