179. On Countably R-closed Spaces. II

By Masao Sakai

(Comm. by Kinjirô Kunugi, M. J. A., Feb. 12, 1971)

A topological space S is called *countably* R-closed, if for any family $\{G_n\}_{n=1}^{\infty}$ of nonvoid open sets such that $G_n \supset \bar{G}_{n+1}$ for every n, we have $\bigcap_{n=1}^{\infty} G_n \neq \phi$. Z. Frolik [1] and the present author [2] gave characterizations of countably R-closed spaces.

In any topological space S, if a family Φ , composed of subsets of S, has a point x such that each neighbourhood of x meets infinitely many members of Φ , we say that Φ cluster to x and that the point x is a cluster point of Φ . S. Kasahara [3] proved the following:

Proposition. In any regular T_1 -space S, the following conditions are equivalent:

- (i) Every family of pairwise disjoint open sets has at least one cluster point.
 - (ii) Every star-finite open covering of S has a finite subcovering.
- (iii) Every star-finite open covering of S has finite subfamily whose union is dense in S.

We shall give another characterization of countably R-closed regular spaces, using the method of S. Kasahara [3].

In any topological space S, a family Φ composed of subsets of S is called *locally finite* if every point x has a neighbourhood U(x) which meets only finite members of Φ , and Φ is called star-finite if every member of Φ meets only finite members of Φ . A subset E is called regularly closed if E is the closure of an open set of S. A covering of S composed of regularly closed sets is called a regularly closed covering of S.

Theorem. In any regular space S, the following conditions are equivalent:

- (1) S is countably R-closed.
- (2) Every family of pairwise disjoint regularly closed sets has at least one cluster point.
- (3) Every family of pairwise disjoint open sets has at least one cluster point.

We shall prove that $(1)\rightarrow(2)\rightarrow(1)$ and $(2)\rightarrow(3)\rightarrow(2)$. In stead of (1), we shall use (4) and (5) of the following Lemma 1.

Lemma 1. In any topological space S, the following conditions are equivalent:

- (1) S is countably R-closed.
- (4) Every locally finite, star-finite, countable, regularly closed