178. On Countably R-closed Spaces. I

By Masao Sakai

(Comm. by Kinjirô KUNUGI, M. J. A., Feb. 12, 1971)

A topological space S is called *countably* R-closed, if for any family $\{G_n\}_{n=1}^{\infty}$ of nonvoid open sets such that $G_n \supset \overline{G}_{n+1}$ for every n, we have $\bigcap_{n=1}^{\infty} G_n \neq \phi$. Z. Frolik [1] proved the following:

Proposition. In any topological space S, the following properties are equivalent:

(i) S is countably R closed.

(ii) Every star-finite open covering of S has a finite subfamily whose union is dense in S.

(iii) Every star-finite open covering of S has a finite subcovering.

(iv) Every star-finite open covering of S is a finite covering.

We shall give other characterizations of countably *R*-closed spaces. In a topological space *S*, a family Φ composed of subsets of *S* is called *locally finite* (*discrete*) if every point *x* has a neighbourhood U(x) which meets only finite members (at most only one member) of Φ , and Φ is called *star-finite* if every member of Φ meets only finite members of Φ . A subset *E* is called *regularly closed* if *E* is the closure of an open set of *S*. A covering of *S* composed of regularly closed sets is called *a regularly closed covering of S*.

Theorem. In any topological space S, the following conditions are equivalent:

(1) S is countably R-closed.

(2) Every locally finite, star-finite, countable, regularly closed covering of S has a finite subcovering.

(3) Every locally finite, star-finite, countable, regularly closed covering of S is a finite covering.

(4) Every locally finite, star-finite, regularly closed covering of S is a finite covering.

(5) Every star-finite open covering of S is a finite covering.

We shall prove that $(1) \rightarrow (2) \rightarrow (3) \rightarrow (1)$ and $(3) \rightarrow (4) \rightarrow (5) \rightarrow (4) \rightarrow (3)$.

Lemma 1. In a topological space S, let $\{\bar{O}_n\}_{n=1}^{\infty}$ be a locally finite, countable, regularly closed covering of S. Then $F_n = \bigcup_{k=n+1}^{\infty} \bar{O}_k$ is closed, $G_n = S - \bigcup_{l=1}^{n} \bar{O}_l$ is open, and $F_n \supset G_n$ for every n.

Lemma 2. Let $\{\bar{O}_n\}_{n=1}^{\infty}$ be a locally finite, star-finite, countable, regularly closed covering of S. For every n, there is $m (\geq n+1)$ such that $F_m \subset G_n$.