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1. Introduction and statement of the result. This paper is con-
cerned with the perturbation of linear contraction semigroups on
Banach spaces. Our result gives a partial extension of a perturbation
theorem for such semigroups obtained by Nelson [5] and Gustafson [1].

A linear operator A (with domain D(A) and range R(A)) in an
arbitrary Banach space X is said to be accretive if

(A) (A + )u [ ][u[[ for every u e D(A) and >0.
This implies that (A + $)- exists and I(A + $)-v I=<- ][vl[, v e R(A + ),
for $0. It can be shown that (A +)-1 has domain X either for every
>0 or for no > 0; in the former case we say that A is m-accretive.

Also, (A) is equivalent to the following condition"

(A’) For every u e D(A) there is f e F(u) such that
Re (Au, f)> O,

where F denotes the duality mapping" F(u) {f e X* (u, f)-II ull
f 2} (cf. Kato [3] in which the term "monotonic" was used instead of

"accretive"). Note that the inequality is not required to hold for every

f e F(u). But if X is reflexive and A is m-accretive, then the inequal-
ity holds for every f e F(u). This is a consequence of the following
facts (cf. Lumer-Phillips [4], Remark I to Theorem 3.1)"

1) --A is the (infinitesimal) generator of a linear contraction
semigroup on an arbitrary Banach space if and only if A is m-accretive
and densely defined;

2) If X is reflexive, then m-accretive operators in X are neces-
sarily densely defined (cf. Kato [2], or Yosida [9], p. 218).
In fact, being the generator of a linear contraction semigroup is inde-
pendent of the multiplicity of duality mapping.

On the (relatively bounded) perturbation of linear contraction
semigroups, we know the following result due to Nelson and Gustafson
(el. [1]).

Theorem 1. Let A and B be linear operators in an arbitrary
Banach space X such that

IIBul]_allull+bllAull, a>=O, 0<b<l, ueD(A)D(B).
If --A is the generator of a linear contraction semigroup and if B is


