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The main purpose of this paper is to answer the question raised in
[4]. The dilation D of Euclidean n-space R defined by xkx for some
k e (0, 1) can be. extended uniquely to the n-sphere, S =RtJ {c}. If h
is a homeomorphism of S of the same topological type as D, then h is
regular except at two points. Krekjart5 [6], Homma and Kinoshita
[2] showed the converse for n--2, n-3 respectively. Husch [3] ex-
tended Homma and Kinoshita’s result for n>=6. He [4] considered the
topological characterization of the dilation in a separable infinite di-
mensional Frchet space E (i.e. in a separable infinite dimensional lo-
cally convex complete linear metric space).

In [4], Husch has the following theorems. Let h be a homeomor-
phism of E (with metric d) onto itself.

Theorem (Husch [4]). Suppose that h is k-regular at each point
of E, 0<k<l (i.e. for each e>0, there exists 8>0 such that if d(x, y)
<, then d(h=(x), h(y))<ke for each integer n).

(1) ([4], Proposition 6, p. 4) h has at most one fixed point.
(2) ([4], Theorem 1, p. 2) If the fixed point set of h, Fix (h), is

not empty, then h has the topological type of a dilation D.
(3) ([4], Theorem 2, p. 2) If Fix (h) is empty, then h has the

topological type of a translation.
In this paper we prove the following"
Theorem 1. If h is k-regular at each point of E, 0<k<l, then

h has a unique fixed point.
Hence we can eliminate the hypothesis that Fix(h) be a non empty

set in Husch’s result (2).
Every separable infinite dimensional Fr6chet space E is homeomor-

phic to the countable infinite product of lines [1]. Hence E is connect-
ed metric space. Thus we only show the following"

Lemma 2. Let h be a k-regular mapping, (0<k<l), of a com-
plete, connected metric space X onto itself. Then h has a unique fixed
point.

Before starting the proof, we recall the following definitions and
some properties [5]. Let h be a continuous mapping in a metric space
X. If for each e>0, there exists n e I+ (positive integers) such that

d(h(x), h(y)) < e for all m>n,


