10. Probabilities on Inheritance in Consanguineous

Families. III

By Yûsaku Komatu and Han Nishimiya
Department of Mathematics, Tokyo Institute of Technology
(Comm. by T. Furuhata, m.J.A., Jan. 12, 1954)

III. Simple mother-descendants combinations (Continuation)
3. General mother-descendants combination

The problems in the preceding sections concern a combination consisting of an individual and its two collateral descendants in which a collateral separation takes place at the original generation. We shall now consider a mother-descendants combination in which a collateral separation appears at a certain intermediate generation. In fact, we introduce a probability

$$
\pi_{l \mid \mu \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \equiv \bar{A}_{\alpha \beta} \kappa_{l \mid \mu \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)
$$

which is defined by an equation

$$
\kappa_{l \mid \mu \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sum \kappa_{l}(\alpha \beta ; a b) \kappa_{\mu \nu}\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)
$$

According to three systems for the $\kappa_{\mu \nu}$'s, we distinguish here also three systems, i.e. $\mu=\nu=1, \mu=1<\nu$ or $\mu>1=\nu$, and $\mu, \nu>1$.

The formula for the lowest system is then expressed in the form

$$
\kappa_{l 111}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sigma\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+2^{-l+1} U\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right),
$$

where the quantity U is defined by

$$
U\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sum Q(\alpha \beta ; a b) \kappa\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) .
$$

It is symmetric with respect to $\xi_{1} \eta_{1}$ and $\xi_{2} \eta_{2}$, and its values are listed as follows; cf. a remark stated at the end of $\mathrm{I}, \S 1$:

$$
\begin{array}{lr}
U(i i ; i i, i i)=\frac{1}{8} i(1-i)(1+i)(1+2 i), U(i i ; i i, i g)=4 i g\left(1-2 i^{2}\right), \\
U(i i ; i i, g g)=\frac{1}{8} i g^{2}(1-2 i), & U(i i ; i i, f g)=\frac{1}{4} i f g(1-2 i), \\
U(i i ; i k, i k)=\frac{1}{8} k\left(1+k-3 i^{2}+i k-8 i^{2} k\right), & U(i i ; i k, k k)=\frac{1}{8} k^{2}(1-3 i+k-4 i k), \\
& \\
U(i i ; i k, i g)=\frac{1}{8} k g\left(1+i-8 i^{2}\right), & U(i i ; ; i k, k g)=\frac{1}{8} k g(1-3 i+2 k-8 i k), \\
U(i i ; i k, g g)=\frac{1}{8} k g^{2}(1-4 i), & U(i i ; i k, f g)=\frac{1}{4} k f g(1-4 i), \\
U(i i ; k k, k k)=-\frac{1}{8} k^{2}(1+k)(1+2 k), & U(i i ; k k, k g)=-\frac{1}{8} k k^{2} g(3+4 k), \\
U(i i ; k k, g g)=-\frac{1}{4} k^{2} g^{2}, & U(i i ; k k, f g)=-\frac{1}{2} k^{2} f g, \\
U(i i ; h k, h k)=-\frac{1}{8} h k(2+3 h+3 k+8 h k), U(i i ; h k, k g)=-\frac{1}{8} h k g(3+8 k), \\
U(i i ; h k, f g)=-h k f g ; & \\
U(i j ; i i, i i)=\frac{1}{16} i(1-2 i)(1+i)(1+2 i), & U(i j ; i i, i j)=\frac{1}{16} i\left(i+2 j+i^{2}-3 i j-8 i^{2} j\right), \\
U(i j ; i i, j j)=\frac{1}{16} i j(i+j-4 i j), & U(i j ; i i, i g)=\frac{1}{16} i g\left(2-3 i-8 i^{2}\right), \\
U(i j ; i i, j g)=\frac{1}{16} i g(i+2 j-8 i j), & U(i j ; i i, g g)=\frac{1}{16} i g^{2}(1-4 i), \\
U(i j ; i i, f g)=\frac{1}{8} i f g(1-4 i), &
\end{array}
$$

