9. Probabilities on Inheritance in Consanguineous Families. II

By Yûsaku Komatu and Han Nishimiya
Department of Mathematics, Tokyo Institute of Technology (Comm. by T. Furuhata, m.J.A., Jan. 12, 1954)

III. Simple mother-descendants combinations

1. Mother-child- ν th descendant combination

We designate, in general, by

$$
\pi_{\mu \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \equiv \bar{A}_{\alpha \beta} \kappa_{\mu \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{z}\right)
$$

the probability of a combination consisting of an individual $A_{\alpha \beta}$ and its μ th and ν th collateral descendants $A_{\xi_{1} \eta_{1}}$ and $A_{\xi_{2} \eta_{2}}$, respectively, originated from the same spouse of $A_{\alpha \beta}$.

Three systems will be distinguished according to $\mu=\nu=1$, $\mu=1<\nu$ or $\mu>1=\nu$, and $\mu, \nu>1$. The lowest system has already been treated as the probability of mother-children combination ${ }^{1)}$

$$
\pi\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \equiv \bar{A}_{\alpha \beta} \kappa\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \quad\left(\kappa \equiv \kappa_{11}\right)
$$

In the present section we consider the second system while the last system will be postponed into the next section.

Now, based on an evident quasi-symmetry relation

$$
\pi_{\mu \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\pi_{\nu \mu}\left(\alpha \beta ; \xi_{2} \eta_{2}, \xi_{1} \eta_{1}\right),
$$

it suffices to deal with the former of the second system. The reduced probability $\kappa_{1 v}$ is then defined by a recurrence equation

$$
\kappa_{1 \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sum \kappa\left(\alpha \beta ; \xi_{1} \eta_{1}, a b\right) \kappa_{\nu-1}\left(a b ; \xi_{2} \eta_{2}\right)
$$

It is shown that the probability is expressed by the formula

$$
\kappa_{1 \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\kappa\left(\alpha \beta ; \xi_{1} \eta_{1}\right) \cdot \bar{A}_{\xi_{2} \eta_{2}}+2^{-\nu} W\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)
$$

The quantity $W\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)$ in the residual term evidently vanishes out unless $A_{\xi_{1} \eta_{1}}$ possesses at least a gene in common with $A_{\alpha \beta}$, and its values are given as follows; cf. also a remark stated at the end of $\mathrm{I}, \S 1$:

$$
\begin{array}{ll}
W(i i ; i i, i i)=3 i^{2}(1-i), & W(i i ; i i, i g)=3 i g(1-2 i), \\
W(i i ; i i, g g)=-3 i g^{2}, & W(i i ; i i, f g)=-6 i f g, \\
W(i i ; i k, i i)=i k(2-3 i), & W(i i ; i k, i k)=k(i+2 k-6 i k), \\
W(i i ; i k, k k)=k^{2}(1-3 k), & W(i i ; i k, i g)=2 k g(1-3 i), \\
W(i i ; i k, k g)=k g^{\prime}(1-6 k), & W(i i ; i k, g g)=-3 k g^{2},
\end{array}
$$

[^0]
[^0]: 1) Cf. a previous paper: IV. Mother-child combinations. 27 (1951), 587-620.
