3. On the Representations of Semi-Simple Lie Groups

By Shôichirô Sakai
Mathematical Institute, Tôhoku University, Sendai
(Comm. by K. Kunugr, m.J.A., Jan. 12, 1954)

The purpose of this note is to give some remarks on the representations of semi-simple Lie groups. In this note we give only the Definitions and Theorems, since we shall give discussions elsewhere in detail.

Let G be a connected Lie group, and $C_{c}^{\infty}(G)$ be the algebra composed of indefinitely differentiable complex-valued functions with compact supports.

Let $U(G)$ be the subalgebra of $D(G)$ composed of all elements whose supports reduce to the identity, then $U(G)$ is isomorphic to the universal enveloping algebra $B^{1)}$ corresponding to G.

Let $D_{z}(G)$ be the center of $D(G)$ and $\varepsilon_{s}(s \in G)$ be the point measure with mass 1 at s.

Then we can easily show that $\alpha(\in D(G))$ belongs to $D_{z}(G)$ if and only if $\varepsilon_{s} \alpha \varepsilon_{s-1}=\alpha$ for all $s \in G$. Let $U_{z}(G)$ be the center of $U(G)$, then $U_{z}(G) \subset D_{z}(G)$.

Let $\{\Pi(x), \mathfrak{H}\}$ be a strongly continuous representation of G on a Banach space $\mathfrak{5}$ and $\{\Pi(f), \mathfrak{g}\}$ be the corresponding representation of $C_{o}^{\infty}(G)$. Let \boldsymbol{B} be the operator algebra composed of all bounded operators on $\mathfrak{5}$. We shall state

Definition 1. A representation $\{\Pi(x), \mathfrak{B}\}$ is n-fold irreducible, if there exists an element $\Pi(f)$ such that

$$
\left\|\Pi(f) x_{i}-B x_{\imath}\right\|<\varepsilon \quad(i=1,2, \ldots, n)
$$

for arbitrary at most n elements $x_{1}, \ldots, x_{n}, B \in \boldsymbol{B}$ and $\varepsilon>0$.
Proposition. If $\{\Pi(x), \mathfrak{5}\}$ is 2 -fold irreducible, it is quasisimple. ${ }^{2)}$

In the following, we shall suppose that G is a connected semisimple Lie group with a decomposition $G=K \cdot S(K \cap S=(e))$ where K is a maximal compact subgroup and S is a quasi-nilpotent subgroup ${ }^{3)}$ in the sense of Harish-Chandra. ${ }^{3}$) Since the above condition i.e. $G=K \cdot S$, seems to be indispensable at certain essential points in our note, we have decided for the sake of uniformity to assume it throughout. Let P be the set of all equivalence classes of irreducible representations of K and $\chi_{a}(k)$ be the character of $d(\in P)$.

We shall denote the equivalence class of irreducible representation of $U(K)$ which corresponds to $d(\in P)$ by the same notation d.

