32. Probabilities on Inheritance in Consanguineous Families. IV

By Yûsaku Komatu and Han Nishimiya

Department of Mathematics, Tokyo Institute of Technology (Comm. by T. FURUHATA, M.J.A., Feb. 12, 1954)

IV. Ancestors-descendant combinations through an intermediate marriage

1. Ancestor-parent-child combination immediate after a marriage

Suppose that two individuals $A_{\alpha\beta}$ and $A_{\gamma\delta}$ are accompanied by their μ th and ν th descendants A_{ab} and A_{cd} , respectively, and that these descendants are married and originate themselves an *n*th descendant $A_{\xi\eta}$. Let the probability of a triple consisting of $(A_{\alpha\beta}, A_{\gamma\delta}; A_{\xi\eta})$ be then designated by

 $\overline{A}_{\alpha\beta}\overline{A}_{\gamma\delta}\varepsilon_{\mu\nu;n}(\alpha\beta,\gamma\delta;\xi\eta).$

The probability of parents-descendant combination, ε_n , treated in I, § 2, may be regarded to correspond to the *lowest case* $\mu = \nu = 0$; in particular, $\varepsilon_1 \equiv \varepsilon_{00;1}$ represents nothing but ε . Here we distinguish four systems in case of higher generation-numbers μ , ν according to $\mu > 0 = \nu$, n = 1 or $\mu = 0 < \nu$, n = 1; $\mu > 0 = \nu$, n > 1 or $\mu = 0 < \nu$, n > 1; $\mu > 0$, $\nu > 0$, n = 1; and $\mu > 0$, $\nu > 0$, n > 1.

The *first system* will now be treated. By virtue of an evident quasi-symmetry property with respect to $\alpha\beta$, $\gamma\delta$ and μ , ν , it suffices to consider the former. Its defining equation

 $\varepsilon_{\mu_0;1}(\alpha\beta,\gamma\delta;\xi\eta) = \sum \kappa_{\mu}(\alpha\beta;ab)\varepsilon(ab,\gamma\delta;\xi\eta)$ can be brought into the form

$$\boldsymbol{\varepsilon}_{\boldsymbol{\mu}\boldsymbol{0};\boldsymbol{1}}(\boldsymbol{\alpha}\boldsymbol{\beta},\,\boldsymbol{\gamma}\boldsymbol{\delta};\,\boldsymbol{\xi}\boldsymbol{\eta}) \!=\! \boldsymbol{\kappa}(\boldsymbol{\gamma}\boldsymbol{\delta};\,\boldsymbol{\xi}\boldsymbol{\eta}) \!+\! 2^{-\boldsymbol{\mu}}C_{\boldsymbol{0}}(\boldsymbol{\alpha}\boldsymbol{\beta},\,\boldsymbol{\gamma}\boldsymbol{\delta};\,\boldsymbol{\xi}\boldsymbol{\eta}),$$

where C_0 is defined by

$$C_0(\alpha\beta,\gamma\delta;\xi\eta)=2\sum Q(\alpha\beta;ab)\varepsilon(ab,\gamma\delta;\xi\eta).$$

The values of C_0 are set out as follows:

*) I-III, Proc. Japan Acad. 30 (1954), 42-52.