19. On the Family of the Solution-Curves of the Integral Inequality

By Takasi KANAZAWA, Akira IWASAKI, and Haruo MURAKAMI Mathematical Institute, Kôbe University (Comm. by K. KUNUGI, M.J.A., Feb. 12, 1954)

A certain generalization of the theorem of Kneser on the differential inequality was shown by Prof. M. Hukuhara.¹⁾ In this note, we shall generalize it to the case of integral inequality

(1)
$$|u(x)-f(x)-\int_{0}^{x} K(x, t, u(t))dt| \leq p(x)$$

where the functions f, u and K represent *n*-dimensional vectors, while x, t and p are real; f(x) is continuous in $0 \le x \le 1$, K(x, t, u)is bounded and continuous in the domain D:

$$0 \le t \le x \le 1$$
, $|u| < \infty$, $p(x)$ is continuous in the interval $0 \le x \le 1$.

Suppose that the family \mathfrak{F} of f(x) is a compact continuum in (C) and \mathfrak{U} is the family of the totality of the solution-curves²⁾ of (1) with $f(x) \in \mathfrak{F}$. Then, \mathfrak{U} is also a compact continuum in (C).

cf. (C) denotes the space of continuous functions on $0 \le x \le 1$ with the norm $||f|| = \max_{0 \le x \le 1} |f(x)|$.

It is evident that the family \mathfrak{U} is a closed and compact set in (C). If \mathfrak{U} is not a continuum, \mathfrak{U} must be the sum of two closed, disjoint and non void sets \mathfrak{U}_1 and \mathfrak{U}_2 . Let \mathfrak{F}_i be the family of the functions $f_i(x)$ whose corresponding solutions are in $\mathfrak{U}_i(i=1,2)$. Then \mathfrak{F}_1 and \mathfrak{F}_2 are closed and $\mathfrak{F}=\mathfrak{F}_1\smile\mathfrak{F}_2$. As \mathfrak{F} is a continuum, there exists f_0 such that

$$f_0 \in \mathfrak{F}_1 \frown \mathfrak{F}_2$$

The family \mathfrak{U}_0 of the solution-curves corresponding to f_0 contains an element of \mathfrak{U}_1 and an element of \mathfrak{U}_2 . Therefore, if we can prove that \mathfrak{U}_0 is a continuum, \mathfrak{U}_0 must contain an element which does not belong to \mathfrak{U} . This contradicts to $\mathfrak{U}_0 \subseteq \mathfrak{U}$. Therefore, it is sufficient to prove that \mathfrak{U}_0 is a continuum, i.e. the solution-curves \mathfrak{U}_0 of the following integral inequality

(2)
$$|u(x) - f(x) - \int_{0}^{x} K(x, t, u(t)) dt| \leq p(x)$$

¹⁾ M. Hukuhara: Sur une généralisation d'un théorème de Kneser, Proc. Japan Acad., **29**, 154 (1953).

^{2) 3)} For the existence of such solutions, see T. Satô's "Sur les équations integrales non-linéaires de Volterra" (forthcoming in «Compositio Mathematica»).