33. Probabilities on Inheritance in Consanguineous
 Families. V

By Yûsaku Komatu and Han Nishimiya
Department of Mathematics, Tokyo Institute of Technology (Comm. by T. Furuhata, m.J.a., Feb. 12, 1954)
V. Mother-descendant combinations through a single consanguineous marriage

1. Mother-descendant combination immediate after a consanguineous marriage

Up to the last chapter, any consanguineous marriage has never been implicated. We now begin to attack the problems concerning a consanguineous marriage.

Let μ th and ν th descendants collaterally originated from a mother $A_{\alpha \beta}$ and her same spouse be married consanguineously and then originate themselves an nth descendant $A_{\xi n}$. Our present purpose is to determine the probability of combination $\left(A_{\alpha \beta} ; A_{\xi_{\eta}}\right)$ which will be designated by

$$
\pi_{\mu \nu ; n}\left(\alpha \beta ; \xi_{\eta}\right) \equiv \bar{A}_{\xi \eta} \kappa_{\mu \nu ; n}(\alpha \beta ; \xi \eta) .
$$

We distinguish three systems according to $\mu=\nu=1, \mu>1=\nu$ or $\mu=1<\nu$, and $\mu, \nu>1$. However, the final results for $\pi_{\mu \nu ; n}$ will be, contrary to $\pi_{\mu \nu}$ discussed in III, unified into a unique expression for any pair of μ, ν with $\mu \geqq 1, \nu \geqq 1$.

We first deal with the case $n=1$. Its defining equation given by

$$
\kappa_{\mu \nu ; 1}(\alpha \beta ; \xi \eta)=\sum \kappa_{\mu \nu}(\alpha \beta ; a b, c d) \varepsilon\left(a b, c d ; \xi_{\eta}\right)
$$

leads to an expression

$$
\kappa_{\mu \nu ; 1}\left(\alpha \beta ; \xi_{\eta}\right)=\bar{A}_{\xi_{\eta}}+L_{\mu \nu} Q\left(\alpha \beta ; \xi_{\eta}\right)+2^{-\lambda} T\left(\alpha \beta ; \xi_{\eta}\right),
$$

where we put

$$
L_{\mu \nu}=2^{-\mu}+2^{-\nu}, \quad \lambda=\mu+\nu-1 .
$$

The values of the quantity defined by

$$
T(\alpha \beta ; \xi \eta)=2\left\{\kappa_{11 ; 1}(\alpha \beta ; \xi \eta)-\kappa\left(\alpha \beta ; \xi_{\eta}\right)\right\}
$$

are set out in the following lines:

$$
\begin{array}{ll}
T(i i ; i i)=\frac{1}{4}(1-i)(2-i), & T(i i ; i k)=-\frac{1}{2} k(2-i), \\
T(i i ; k k)=\frac{1}{4} k(1+k), & T(i i ; h k)=\frac{1}{2} h k ; \\
T(i j ; i i)=\frac{1}{8}\left(1-2 i+2 i^{2}\right), & T(i j ; i j)=\frac{1}{4}(1-2 i-2 j+2 i j), \\
T(i j ; i k)=-\frac{1}{2} k(1-i), & T(i j ; k k)=\frac{1}{4} k(1+k), \\
T(i j ; h k)=\frac{1}{2} h k . &
\end{array}
$$

It can be shown that there hold the relations

